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REGIONAL ANALYSIS OF THE
BLACK CREEK-COBB COALBED-METHANE TARGET INTERVAL,
BLACK WARRIOR BASIN, ALABAMA

By

Jack C. Pashin

ABSTRACT

Identification of geologic controls on coal-
bed-methane production and occurrence in the
Black Warrior basin of Alabama employed struc-
tural, sedimentologic, coal-quality, hydrologic,
completion, and production data in order to
refine exploration and production strategies.
Geologic structure controls the attitude, depth,
and fracture architecture of target coal-bearing
strata in the Pottsville Formation. Coal-bearing
strata in the Black Warrior basin generally dip
southwest, are broken by multifarious folds,
thrust faults, normal faults, joints, and cleats
that reflect a polyphase tectonic history and
define attitude, depth, and permeability. Geo-
logic structure is an integral factor that affected
sedimentation, coalification, hydrology, and the
ultimate occurrence and producibility of coalbed
methane in the Black Warrior basin.

The Black Creek-Cobb interval, which is the

primary coalbed-methane target zone in the -

Pottsville of Alabama, was deposited in a tec-
tonically evolving basin. In each depositional
cycle, however, coal beds are most abundant in
the eastern part of the basin owing to pro-
tection from marine water and establishment of
fluvial-deltaic platforms amenable to peat (coal)
accumulation. Outcrop analysis of the Mary Lee
coal group indicated that fluvial processes,
particularly crevasse-splay formation and chan-
nel avulsion, are major controls on coal-body
thickness and geometry and can be used to
formulate predictive subsurface models of coal
occurrence. Subsurface investigation of coal
occurrence in Oak Grove field demonstrated
that, in addition to fluvial processes, synsedi-
mentary fault and fold movement gave rise to
varied and contrasting styles of coal occurrence
that were used to make predictive models of
coal occurrence that are advantageous for

assessing resources, strategically siting wells, and
identifying completion targets.

Peat was coalified and gas was generated as
sedimentation and tectonic activity continued.
Comparing rank and structural data suggests
that regional burial coalification was locally
overprinted hydrothermally, thereby forming
the highest rank coal in the basin. Ash and sulfur
content tend to be lowest in the easternmost
Pottsville outcrop area where thick peat accu-
mulated. Coal is apparently the principal source
of coalbed methane in the Pottsville, and the gas
may have locally undergone thermal cracking
and bacterial alteration. Coalbed methane in
the Black Warrior basin may also include com-
mingled biogenic and thermogenic gas, and
some gas may have migrated into coal from
deep sources.

The modern hydrogeologic framework that
controls coalbed-methane production is a com-
posite response to tectonism, sedimentation,
and coalification. Coal beds are the principal
aquifers in the Black Creek-Cobb interval owing
to closely spaced cleat; most other flow is also
through secondary conduits such as joints and
faults. Underground mining and coalbed-meth-
ane production have lowered the water table
and have reduced reservoir pressure significantly
in many areas, and recharge along the southeast
basin margin has formed structurally controlled
fresh-water plumes that minimize water-dis-
posal problems. Cretaceous aquifers intercept
recharge in the western part of the basin, how-
ever, and may thus increase water-disposal
concerns in that area.

Statistical analysis of factors that affect
coalbed-methane production yielded only lim-
ited success, but mapping production demon-
strated that wells with exceptional coalbed-
methane production, or peak gas production
higher than 200 Mcfd, are extremely localized
and commonly occur along northeast-trending
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structures that are zones of enhanced fracture
permeability. Hydrologic data indicate that
many high-permeability trends exist that are not
associated with exceptional coalbed-methane
production and that target coal beds are struc-
turally compartmentalized reservoirs. These data
also indicate that all exceptionally productive
coalbed-methane wells occur where reservoir
pressure has been lowered significantly. There-
fore, highly productive areas are interpreted to
represent structural compartments where for-
mation pressure has been lowered enough to
facilitate desorption of a large quantity of
methane. Hence, completion technology and
field design can be tailored to specific geologic
settings in order to make and utilize reservoir
compartments that are easily depressurized,
thereby optimizing reservoir drainage.

INTRODUCTION

Understanding geologic controls on the
occurrence and producibility of coalbed meth-
ane is essential for constructing field- and well-
design strategies that will help ensure a long-
term, low-cost supply of domestic natural gas;
characterizing those controls is the objective of
this study. Early coalbed-methane research in
the Black Warrior basin of Alabama focused on
determining the economic feasibility of pro-
ducing the gas and quantifying the gas resource,
which is estimated to be between 10 and 19.8
Tcf (Hewitt, 1984; Sexton and Hinkle, 1985,
McFall and others, 1986), whereas recent studies
have focused on identifying geologic controls on
coalbed-methane occurrence and production
(Epsman and others, 1988; Pashin and others,
1990). Important results of these investigations
have been refinement of geologic models for
the Black Warrior basin and the development of
a preliminary exploration. and production
philosophy.

This report provides additional perspective
regarding geologic controls on coalbed-meth-
ane occurrence and production. Our objective is
to show how structure, sedimentology, coal
quality, and hydrology are critical production
parameters for coalbed-methane resources.
Structural activity influenced sedimentation,
coalification, hydrology, and the ultimate occur-
rence and producibility of coalbed methane in
the Black Warrior basin. Therefore, this study
uses the structural framework of the basin as a

starting point and discusses sedimentation,
coalification, hydrology and producibility in
light of that framework.

BACKGROUND

BLACK WARRIOR BASIN

Development of Alabama’s coalbed-meth-
ane industry began with the drilling of Oak
Grove field (fig. 1) in 1977 and 1978 and issuance
of the first drilling permits by the State Oil and
Gas Board of Alabama in 1980. Since that time,
coalbed methane has developed into an
economically viable energy resource, and the
Black Warrior basin leads the nation in coalbed-
methane well completion.

As of November 30, 1990, 1,517 coalbed-
methane wells were producing in the Black
Warrior basin. As of December 31, 1990, 2,265
additional wells were in various stages of drilling
and testing, thus making a total of 3,782
coalbed-methane wells in the basin. The estab-
lished coalbed-methane fields in the Black
Warrior basin are in Jefferson and Tuscaloosa
Counties (fig. 1). Through November 1990, 83
percent of the coalbed-methane production in
the Black Warrior basin has been in Brookwood
and Oak Grove fields (fig. 1) where a mutually
beneficial relationship exists between under-
ground mining and coal degasification (Elder
and Deul, 1974; Epsman and others, 1988;
Pashin and others, 1989); drilling in areas un-
affected by underground mining is in an early
phase. '

Cumulative production of coalbed methane
in the Black Warrior basin of Alabama has
exceeded 125 billion cubic feet (B¢cf) in only 10
years. In 1981, coalbed methane represented
only 0.04 percent of the gas produced in
Alabama, whereas in 1989, coalbed-methane
production accounted for more than 34 percent
(23 Bcf) of the natural gas produced in the Black
Warrior basin of Alabama and approximately 13
percent of the state's total gas production.

The study area chosen for this investigation
is the part of the Black Warrior basin of Alabama
underlain by the Pennsylvanian upper Pottsville
Formation, which contains the principal coal-
bed-methane target interval (McFall and others,
1986). The Black Warrior basin is the most
actively developing coalbed-methane region in
the eastern United States and is the only eastern



_STUDY AREA

10 Miles

COALBED-METHANE FIELDS

A. PLEASANT GROVE
B. OAK GROVE
C. BROOKWOOD
D. HOLT
E. CEDAR COVE
F. DEERLICK CREEK
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. DOR
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Figure 1.--Index map of study area showing location of coalbed-methane fields, underground coal
mines, and field stations.
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coal basin that contains numerous coalbed-
methane wells. Hence, results of this study may
serve as important guidelines during initial
development of the Appalachian basin of
Virginia, West Virginia, Pennsylvania, Kentucky,
and Ohio, which has significant coalbed-
methane potential (Kelafant and others, 1988).

OAK GROVE FIELD

In addition to the regional study, Oak Grove
field (figs. 1, 2) was chosen for a detailed study
because (1) data are abundant, (2) the field is
representative of geological conditions in most
parts of the Black Warrior basin, and (3) it has
the longest production history of any coalbed-
methane field in the basin. Most of the western
part of the field has been drilled with the
exception of the Big Indian Creek site which is
naturally depleted of methane (Boyer and
others, 1986) (fig. 2). Drilling is just beginning in
the northeastern part of the field, which is not
included in many of the maps in this text.

The Oak Grove mine, which was established
in 1974 and is operated by U.S. Steel Mining
Company, is in the east-central part of the field
(fig. 2). In the mine, the Blue Creek bed of the
Mary Lee coal group is mined at a depth of
approximately 1,150 feet. Deep underground
coal mines in the Blue Creek bed in Brookwood
and Oak Grove fields impact the hydrogeologic
system and coalbed-methane production
(Briscoe and others, 1988; Epsman and others,
1988; Oyler, 1989; Pashin and others, 1989,
1990).

In 1977 and 1978, a pattern of 23 coalbed-
methane wells was drilled immediately east of
the mine as part of a U.S. Bureau of Mines pilot
program to reduce methane-related mine haz-
ards and to enhance mine productivity. The pro-
gram demonstrated the feasibility of coalbed
methane as an economic resource, and in 1980,
Oak Grove field was formally established in the
area around the mine by the State Oil and Gas
Board. Fewer than 50 wells were on line from
1981 to 1985, and less than 1 Bcf of methane was
produced annually. Shortly thereafter, permit-
ting activity increased dramatically, and the field
was expanded to its present size in 1988. As of
November, 1990, 519 wells had produced 31 Bcf
of coalbed methane, and a total of 803 wells had
been permitted, the most of any economically

producing coalbed-methane field in the United
States.

Oak Grove field contains the Rock Creek test
site (fig. 2), which is operated jointly by the Gas
Research Institute and Taurus Exploration, Incor-
porated, the principal developer of the field.
The Rock Creek site is approximately 2 miles
north of the Oak Grove mine and is the principal
engineering research center in the eastern
United States for the development of multiple
coal-seam completion technology. This study
includes characterizing the structural geology at
the test site to aid engineering investigations.
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REGIONAL GEOLOGIC SETTING

The Black Warrior basin (fig. 3) encompasses
a triangular area in Alabama and Mississippi that
is bounded on the southeast by the Appalachian
orogen, on the southwest by the Ouachita
orogen, and on the north by the Nashville dome
(Mellen, 1947; Thomas, 1988a, b). The Black
Warrior basin is contiguous with the Appa-
fachian basin in the northeast and is separated
from the Arkoma basin in the west by the
Mississippi Valley graben (Thomas, 1988b).
Tectonically, the Black Warrior basin is a late
Paleozoic foreland basin that formed flexurally
in response to converging Alleghanian thrust
and sediment loads in the Appalachian and
Quachita orogens (Beaumont and others, 1988;
Hines, 1988).
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Figure 3.--Regional geologic setting of the Black Warrior basin.

The northern margin of the basin is gen-
erally considered the outcrop limit of the Lower
Pennsylvanian Pottsville Formation, which con-
tains all of the coal beds that have been
identified as economic coalbed-methane res-
ervoirs. The Pottsville crops out only in the east-
ern part of the Black Warrior basin in Alabama,
and approximately two-thirds of the basin is
buried beneath Cretaceous and younger strata
of the Mississippi Embayment and the Guif
Coastal Plain (fig. 3). Cretaceous strata of the
Tuscaloosa Group overlie the Pottsville Form-
ation disconformably; and adjacent to the deep-
ly buried Ouachita orogen in Mississippi, Meso-
zoic and Cenozoic sediment is thicker than 6,000
feet. The Tuscaloosa Group consists of uncon-
solidated sand, gravel, and clay and contains a
major aquifer (Coker Formation) that intercepts
groundwater recharge west of the Pottsville
outcrop area (Pashin and others, 1990).

The Pottsville Formation has been divided
into two parts in Alabama (McCalley, 1900). The
lower Pottsville is dominated by quartzose sand-
stone and contains thin, discontinuous coal beds
that have not been examined fully for their
coalbed-methane potential. The upper Pottsville
contains numerous economic coal beds and the

majority of Alabama's coal resources (fig. 4). The
major coal beds in the upper Pottsville occur in
stratigraphic bundles called coal groups
(McCalley, 1900); coal groups have formed the
basis of most stratigraphic subdivisions of the
upper Pottsville (McCaliey, 1900; Butts, 1910,
1926, Culbertson, 1964; Metzger, 1965).

Coal groups generally cap regressive,
coarsening-upward sequences, or cycles (fig. 4).
The cycles have as much as 350 feet of marine
mudstone at the base and typically coarsen
upward into sandstone. At the top of each cycle
is the interbedded mudstone, sandstone, under-
clay and coal that make up a coal group. Sub-
surface investigations indicate that most cycles
can be traced throughout the Black Warrior
basin (Cleaves, 1981; Sestak, 1984; Hines, 1988).

The Black Creek-Cobb interval of the upper
Pottsville (figs. 4, 5) is the major coalbed-meth-
ane target zone in Alabama (McFall and others,
1986). The Black Creek-Cobb interval contains
five regionally extensive cycles named (1) Black
Creek, (2) Mary Lee, (3) Gillespy/Curry, (4) Pratt,
and (5) Cobb after the associated coal groups.
Subdivision of some cycles is possible. For ex-
ample, the Black Creek cycle was subdivided into
lower and upper subcycles, which can be
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Figure 4.--Stratigraphy of the upper Pottsville
Formation showing major depositional
cycles.

identified only in the eastern part of the study
area, to aid subsurface mapping in Oak Grove
field. The Gillespy and Curry coal beds
(Gillespy/Curry cycle) were separated from the
Pratt coal group (Pratt cycle) because they cap
separate genetic sequences that are regionally
extensive (Pashin and others, 1990). Bed names
are most readily applied in the Mary Lee and
Gillespy/Curry cycles and are listed in figure 5. As
a rule, however, coal-body geometry is too com-
plicated to apply bed names in most cycles
except in local studies.

STRUCTURAL GEOLOGY:
FRACTURE ARCHITECTURE

The objectives of this chapter are to syn-
thesize the available structural data to define
the attitude, fracture architecture, and struc-
tural history of coal-bearing strata in the Black
Warrior basin. Regional structure controls burial
depth which, along with geothermal history,
determines how much methane may have been
generated during coalification. Structure also

7

affects the depth at which coal occurs and
consequently how much methane may be
retained in the coal following erosional unroof-
ing of the sedimentary basin (Jintgen and Kar-
weil, 1966). The distribution and openness of
fractures also play a major role in determining
the pathways along which water and gas may
migrate. ‘

Geologic structure is a unifying concept in
this study because it affected sedimentation,
coalification, hydrogeology, and the ultimate
occurrence and producibility of coalbed meth-
ane in the Black Warrior basin. Structural meth-
ods are critical for coalbed-methane exploration
and production planning because they are
necessary to define the attitude, depth, and
fracture architecture of target coal-bearing
strata. Fracture analysis is critical for identifying
avenues of permeability and for showing how
permeability varies with respect to folds, thrust
faults, normal faults, joints, cleat, and associated
fractures. Structural analysis confirms that the
Black Warrior basin had a polyphase tectonic
history that included Alleghanian orogenesis,
Mesozoic rifting, and ongoing epeirogenesis.
This polyphase history resulted in diverse struc-
tural patterns that today affect fluid flow and,
hence, the occurrence and producibility of
coalbed methane.

METHODS

To define the attitude of Pottsville strata, a
structural contour map of the top of the Mary
Lee cycle was drawn using data from density logs
(fig. 6). Numerous faults and folds in the Black
Warrior basin are too small to be shown at the
scale of a basin-wide structural contour map.
Therefore, an additional map showing the loca-
tion of folds and faults was made; the map is
based on (1) reports and dockets on file at the
State Oil and Gas Board, (2) maps that are on file
at the Geological Survey of Alabama, and (3)
published reports (Kidd, 1982; Ward and others,
1984, 1989; Epsman,1987; Raymond and others,
1988). A structural contour map of the top of the
Mary Lee coal bed in Oak Grove field also was
made to clarify structural relationships in the
eastern part of the Black Warrior basin.

Folds, faults, joints, cleat, and associated
fractures were described in Oak Grove and
Brookwood fields and adjacent areas where
structural features are well exposed. Joint, cleat,
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and lineament orientation were mapped region-

ally and locally or were compiled from the files

of the Geological Survey of Alabama. Joint and
cleat data are available only from Pottsville out-
crops and underground coal mines, because
fractures are generally not exposed in uncon-
solidated Cretaceous and Tertiary strata owing
to deep weathering.

A regional lineament map was made using
Landsat bands 6 and 7 images (scale 1:250,000).
Lineaments on the map are straight stream
segments, topographic offsets, and tonal
anomalies. To test the relationship of lineaments
to geological features in central Oak Grove field,
lineaments from Landsat, Sidelooking Airborne
Radar (SLAR) (scale 1:250,000; east-west look
direction), and orthophotoquads (scale
1:24,000) were compared with structural data
from the field.

FOLDS AND THRUST FAULTS

Appalachian folds and thrust faults strike
approximately N. 40° E. and occur along the
southeastern margin of the Black Warrior basin
(figs. 7, 8). The basin is bounded on the south-
east by the Birmingham anticlinorium of the

Valley and Ridge province. Thrust faults occur in
the core of the anticlinorium, and Cambrian-
Ordovician carbonate rocks are exposed along
the axial trace of the structure. The Opossum
Valley thrust fault (B) separates the anti-

- clinorium from the Black Warrior basin along

the southeast basin margin. The thrust fault
passes blindly into Blue Creek anticline (D)
adjacent to Oak Grove and Brookwood fields
(Adams and others, 1926; Kidd, 1979).

The Blue Creek anticline (fig. 7, D) is strongly
asymmetrical, verges northwest, and has ap-
proximately 2,000 feet of structural relief (figs. 7,
9). The limbs of the anticline generally dip 15 to
20°, but the northwest limb contains a gently
dipping monoclinal segment along the south-
east margin of Oak Grove and Brookwood fields
(figs. 9, 10); northwest of the monoclinal
structure, strata dip as much as 70°. The north-
west limb also is broken by thrust faults with
hundreds of feet of displacement (Blair, 1929;
Miller, 1934). At the southeast margin of Brook-
wood field, the culmination of the Blue Creek
anticling contains the Mississippian-
Pennsylvanian Parkwood Formation, and the
northwest limb is overturned.
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Figure 8.--Structural contour map of the top of the Mary Lee cycle, Black Warrior basin, Alabama.

The Blue Creek syncline (fig. 7, C) contains
numerous smaller folds and is faulted adjacent
to the Birmingham anticlinorium. Strata of the
Mary Lee coal group, which is the principal de-
gasification target in Oak Grove field, crop out
and are mined in the Blue Creek syncline and
along the northwest limb of the Blue Creek anti-
cline (Epsman and others, 1988; Pashin and
Sarnecki, 1990). The northwest limb dips gently
at 15 to 20°, and the southeast limb is commonly
steep to overturned, although precise structural
relationships are unclear because of poor
exposure.

The Coalburg syncline (fig. 7, E) is northwest
of the Opossum Valley thrust fault (B) and the
Blue Creek anticline (D) and has a common limb
with the Blue Creek anticline in the southeast
and the Sequatchie anticline (F) in the northwest
(figs. 7, 10). The syncline is strongly asymmetri-
cal, and the axial trace closely parallels the
Opossum Valley thrust fault and the Blue Creek
anticline. However, the axial trace of the syn-
cline is disjunct and is broken by numerous
horsts and grabens along the southeast margin
of the Black Warrior basin (fig. 10). In. south-
central Oak Grove field, the axial trace of the

Coalburg syncline ends abruptly at a normal
fault.

In north-central Oak Grove field, the Se-
quatchie anticline (fig. 7, F) is a simple fold that
plunges southwestward and has more than 400
feet of structural closure (fig. 10). Like the
Coalburg syncline, the Sequatchie anticline ter-
minates at normal faults, but the anticline curves
toward the south near the terminus. Approx-
imately 5 miles northeast of Oak Grove field, the
anticline verges northwest, and approximately
10 miles farther northeast, a thrust fault occurs
in the core of the structure.

The Pickens-Sumter anticline (fig. 7, H)
occurs below Cretaceous cover in southern Pick-
ens County and northern Sumter County (fig. 8).
The Pottsville is absent along the crest of the
anticline, which has a maximum structural relief
of 6,000 feet (Thomas, 1973). The anticline is a
thrust-ramp structure that is bound on the
northeast by a transverse fault, and lateral dis-
placement along the thrust fault is less than 1
mile.

Strata in the Blue Creek (D) and Sequatchie
(F) anticlines (fig. 7) are intensely fractured com-
pared to those in the remainder of the Black
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Warrior basin, and closely spaced fractures are
best developed on the Blue Creek anticline. Frac-
tures dipping approximately 60° NW. predom-
inate, and fracture spacing ranges from approx-
imately 1 foot to more than 10 feet on the
northwest limb. Near the crest of the Blue Creek
anticline, however, fractures are perpendicular
to bedding and have a spacing of less than 8
inches. :

Back-thrust structures occur on the Blue
Creek and Sequatchie anticlines. On the Se-
quatchie anticline, the back-thrust faults strike
approximately N. 85° E. and dip 50° NW. and
have a throw of less than 20 feet. At an aban-
doned mine highwall near Dora (NE} sec. 29, T.
15 S., R. 5 W,; fig. 1), two back-thrust structures
are exposed. One fault is developed mainly in
mudstone and has approximately 1 foot of con-
voluted, shaly gouge (fig. 11). The other fault
has displaced mudstone, sandstone and coal and
has between 0.5 foot and 4 feet of gouge (fig.
12). Gouge is poorly developed near the base of
the highwall, where the fault intersects coal.
Where the gouge zone is widest, mudstone is
folded, whereas sandstone is intensely frac-

. tured; fractures in the sandstone are 0.25 foot to

more than 3 feet long and have a spacing of less
than 0.25 foot. Back-thrust structures on the
Blue Creek anticline are poorly developed com-
pared to those on the Sequatchie anticline and
are restricted mainly to thick coal beds in the
Mary Lee group. Displacement is generally less
than 10 feet, and the faults are oblique to
primary bedding by less than 8° and scarcely
penetrate adjacent strata.

NORMAL FAULTS

Normal faults are abundant throughout the
Black Warrior basin and define a series of linear
to arcuate horst-and-graben systems (figs. 7, 8).
The faults are generally oriented northwest and
turn westward in Mississippi. In the easternmost
part of the basin, fault length generally is less
than 2 miles, and fault throw generally is less
than 200 feet; regional dip is approximately 70
feet per mile (<1°). In eastern Pickens County,
however, several contours turn sharply north-
ward and mark a hinge zone to the east of sev-



Figure 12.--Reverse fault in mudstone and sandstone with convoluted shaly gouge and
fractured sandstone gouge. Note that gouge tapers downward in mudstone.




eral arcuate faults. The faults define a series of
narrow grabens in Lamar and Pickens Counties
that extend for tens of miles and have throw in
excess of 1,000 feet.

A structural contour map of the unconform-
able surface at the top of the Pottsville Forma-
tion (Kidd, 1976) (fig. 13) indicates that the
surface strikes northwest and that dip increases
gently toward the southwest. Structure contours
parallel those on the Mary Lee map in the south-

westernmost part of the map area, but contours:

are oblique elsewhere. The map indicates that
normal faults do not penetrate Cretaceous
strata, and cross sections from Mississippi
(Thomas, 1988a) indicate that normal fauits in
the Pottsville terminate at the unconformable
surface.

The structural contour map of Oak Grove
field shows a strong relationship between nor-
mal faults, the Coalburg syncline, and the Se-
quatchie anticline (fig. 10). Right-stepping horst-
and-graben systems are abundant in the Coal-
burg syncline, and a major system traverses the
south-central part of Oak Grove field; that sys-
tem marks the southwest limit of the Sequatchie
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anticline and the Coalburg syncline. Strike of the
faults is N. 20-40° W.; throw is locally 80 feet and
generally decreases toward the north-central
part of the field. In addition, trace length gen-
erally decreases from 4 miles in the south to 1
mile in the north, and fault orientation becomes
less consistent toward the north.

Three normal faults are well exposed in the
Oak Grove area. At Bankhead Lock and Dam
(NE} sec. 27, T. 18 S., R. 8 W.; fig. 1), a normal
fault strikes N. 25° W. and dips 80° NE. Throw of
the fault is approximately 200 feet (Rheams and
Benson, 1982), and marine mudstone of the
Brookwood cycle is in contact with marginal-
marine sandstone of the Utley cycle (fig. 14). The
fault contains approximately 1 foot of shaly
gouge and intensely fractured sandstone and in-
cludes a sandstone horse block that has been
transported down the fault plane.

A fault plane in central Oak Grove field (SE}
sec. 32, T. 18 S, R. 6 W.; fig. 1) was exposed by
road construction. The fault strikes N. 35° W. and
dips 80° SW.; it has a throw of approximately 100
feet and juxtaposes marine mudstone of the
Utley cycle with terrestrial sandstone and mud-

........
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Figure 13.--Structural contour map of the unconformable surface at the top of the Pottsville
Formation, Black Warrior basin, Alabama (after Kidd, 1976).
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shear fractures (F=fault gouge, S=synthetic joint, A=antitheticjoint).

stone of the Gwin cycle. Numerous drag struc-
tures occur along the fault trace. Drag folds
occur in a zone approximately 3 feet wide in the
mudstone, whereas fibrous slickensides and
closely spaced (approximately 2 inches) shear
fractures are abundant in the sandstone.

Another fault is exposed in easternmost
Brookwood field (NE4 sec. 13, T. 20 S., R. 7 W,;
fig. 1). The fault strikes N. 25° W. and dips 50°
NE., which is low for normal faults in the Black
Warrior basin. Stratigraphic relationships indi-
cate that net slip is normal and approximately 30
feet. In the footwall, however, drag folds and
reverse faults with less than 1 foot displacement
indicate that the last episode of fault movement
was reverse.

Faults with other characteristics are exposed
in the Oak Grove mine (fig. 15). One normal
fault is associated with a small rollover structure
(McDaniel, 1986), and several normal faults con-
tain horizontal slickensides that demonstrate a
strike-slip component (Epsman and others,
1988). One strike-slip fault contains several feet
of mudstone and sandstone gouge that posed a
significant mining hazard (McDaniel, 1986). Thus

far, the largest normal fault observed in the
mine has net throw of only 7 feet.

STRUCTURAL GEOLOGY OF THE
ROCK CREEK SITE

Structural contour maps of the top of the
Mary Lee and Pratt coal beds at the Rock Creek
site (fig. 16) were made to clarify local geology
and to aid in application of well-siting and well-
completion techniques. The Mary Lee map
shows anticlines and synclines with axial traces
that trend northeast, whereas the Pratt structure
map depicts a southeast-dipping surface that
curves northeast and has approximately 40 feet
of structural relief.

Pashin and others (1990) suggested that the
structure in the Mary Lee is compactional. The
Blue Creek bed fills channels in the nearby Oak
Grove mine (McDaniel, 1986) (fig. 15), so the
structural contours may also reflect accumu-
lation of peat on an erosional surface. As is the
case with the Mary Lee map, much of the struc-
ture in the Pratt can be accounted for by dif-
ferential compaction following sedimentation.
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Figure 15.--Geologic structures in the Oak Grove mine (after McDaniel, 1986).
See figure 2 for mine location.

The isopach map of the siliciclastic interval
between the upper two coal beds of the Pratt
cycle shows that the interval thins by 20 feet
from west to east (fig. 16). Therefore, only 10
feet of structural relief along the southern part
of the structure may not be accounted for by dif-
ferential compaction. However, thickness of the
siliciclastic interval is fairly uniform in the north
where the contours may more accurately reflect
structure.

Results of mapping indicate that structural

contour maps based on different coal beds in
the same area may bear little resemblance to
each other. Therefore, local structure maps
should be interpreted with caution. Even so,
such maps are useful in coalbed-methane ex-
ploration and production, because they define
the attitude of target coal beds and thus provide
a basis for predicting coal occurrence.

JOINTS

Two regional joint systems, systems A and B,
occur in the Black Warrior basin (Ward, 1977;
Ward and others, 1984; Pashin and others, 1990)
(fig. 17). Each system is ‘composed of a well-
developed master joint set (set 1) and a poorly
developed orthogonal complement (set Il). Set |
joints are generally planar and vertically per-
sistent (fig. 18), whereas set Il joints commonly
curve in plan view and cross section. Many joints
are simple fractures, whereas others, especially
set Il joints, are broad fracture zones. The frac-
ture-zone style of jointing has been observed
only at the surface and may simply be a weather-
ing phenomenon. Cross-cutting relationships
among the joint sets are in places inconsistent,
but set Il joints commonly abut set | joints.
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Figure 18.--Planar set | joints in abandoned mine highwall, Oak Grove field.

System A joints are distributed throughout
the Pottsville outcrop area (fig. 17), and on the
basis of 463 readings, the master set has a
vector-mean azimuth of N. 47°E. In contrast, sys-
tem B joints occur only in the vicinity of the
Appalachian folds (Sequatchie anticline and
Coalburg syncline), and on the basis of 356 read-
ings, the master set has a vector-mean azimuth
of N. 64° W. Where systems A and B joints occur
together, system B joints are most abundant.
Master joints are strongly aligned and have con-
sistency ratios (Potter and Pettijohn, 1977), or
degrees of alignment, of 93 (system A) and 94
(system B). System B joints have a lower consis-
tency ratio than system A joints because they are
generally perpendicular to the curving axial
trace of the Sequatchie anticline.

Data from underground mines demonstrate
that subsurface joint populations differ from
those at the surface. For example, set Il joints are
scarce in the Jim Walter #4 mine in Brookwood
field (fig. 1) at a depth of more than 2,000 feet
and in the Oak Grove mine at an approximate
depth of 1,150 feet. Additionally, system A and
system B joints are abundant in the Jim Walter

#4 mine, whereas only system A joints are
common above the mine at the surface.

Dipping synthetic and antithetic joints are
associated with normal faults. These fractures
dip steeper than 45°; synthetic joints parallel the
associated fault plane, whereas antithetic joints
are the dihedral complement, or mirror image,
of the fault plane. Such joints are most common
in the footwall of faults and are generally
simple, planar structures. However, some of the
fractures have more than 1 inch of reverse
throw. Most synthetic and antithetic joints strike
parallel to the associated fault and can be used
to determine the presence and orientation of a
fault in the field.

Fault-related joints are well exposed at the
Bankhead Lock and Dam (figs. 1, 14). The joints
are abundant in the sandstone of the footwall
and occur only within 100 feet of the fault.
However, joints in the mudstone of the hanging
wall are poorly and sporadically developed and
only occur within 30 feet of the fault. The frac-
tures strike N. 20° W., parallel to the fault;
synthetic joints dip 50-70° NE., whereas anti-
thetic joints dip 50-70° SW. Antithetic joints are
much more common than synthetic joints, and



spacing increases systematically away from the
fault plane. Synthetic joints, in contrast, are ir-

regularly spaced and only sporadically
developed.
CLEAT AND OTHER FRACTURES
IN COAL

Cleat is a miner’s term for joints in coal; cleat
is much more closely spaced than joints in ad-
jacent rocks. Face cleat is the master joint set
that is perpendicular to bedding, planar, later-
ally persistent, strongly aligned, and generally is
evenly spaced. Butt cleat is typically orthogonal
to the face cleat and commonly has an irregular
surface. Butt cleat commonly terminates where
it intersects the face cleat, indicating that the
butt cleat is younger. Face-cleat spacing varies
regionally in the Black Warrior basin and
increases from approximately 0.2 inch along the
Blue Creek anticline to 0.75 inch in the north-
westernmost part of the Pottsville outcrop area
{McFall and others, 1986).

Calcite is the most common cleat-filling
mineral in the Black Warrior basin, although
pyrite and clay occur at some localities. In surface
exposures, reddish ferruginous stain and yellow-
ish to whitish sulfate stain are common on face-
cleat planes. Stained butt-cleat surfaces are
scarce. Cleat fillings vary in abundance in the
Pottsville outcrop area. Where present, cleat
fillings are generally patchy, occupy only a small
proportion of the fracture system, and are devel-
oped mainly on the face cleat. At most outcrops,
the fill ranges from a thin film to as much as 0.2
inch wide; only the widest cleat fills extend for
more than 2 feet.

As with joints, two cleat systems, systems A
and B, occur in the Black Warrior basin (fig. 17).
System A occurs throughout the Pottsville out-
crop area, and cleat orientation is uniform; cleat
orientation in underground mines corresponds
closely with that at the surface (McCulloch and
others, 1976; Ward and others, 1984). The
vector-mean azimuth of the face cleat of system
A is N. 62° E., and the consistency ratio is 91.
However, a local cleat system, system B, occurs
along the southeast basin margin near the Blue
Creek anticline and the Opossum Valley thrust
fault (figs. 7, 17). These fractures locally obscure
and cut across the regional cleat system. System
B face cleat is perpendicular to the axial trace of
the Blue Creek anticline and has a vector-mean
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azimuth of N. 36° W.; butt cleat is generally not
apparent and may coincide with the face cleat of
system A. Along the Blue Creek anticline and
Opossum Valley thrust fault, spacing of the local
cleat system is approximately 0.2 inch, and only 3
miles northwest, cleat spacing is approximately 3
inches. Cross-cutting relationships between the
joint and cleat systems are inconclusive.

In the Oak Grove mine, the Blue Creek coal
bed is internally deformed and has unusual
fracture systems. Similar systems were observed
in the Mary Lee coal group at surface mines
along the Blue Creek anticline and syncline. In
many areas, these fracture systems occur ad-
jacent to normal and thrust faults. Inclined
fractures are extremely abundant and are in
places spaced closer than 0.125 inch; close frac-
ture spacing obscures coal banding in outcrop.
The fractures generally dip 40 to 60° SE. and are
curved in plan. Most of the fractures curve
approximately 120°, are 1 to 3 feet long, and de-
fine a fanlike pattern. Some fractures are strong-
ly curved and contain shear cones (cone-in-cone
structures) between 1 and 3 inches wide and
tall; similar structures have been described from
coal in West Virginia, Great Britain, and New
Zealand (Price and Shaub, 1963).

Polished slabs establish that coal banding is
preserved and largely undisturbed—even where
fractures are closely spaced (fig. 19). Inclined
fractures are best developed in dull bands
(clarain), whereas bright bands (vitrain) also con-
tain vertical fractures resembling normal cleat;
fusain lenses are generally not fractured. Some
bands are dislocated along normal faults and
thrust faults with displacement less than 1 inch,
and horizontal and inclined slickensides were
observed in some beds. In the Oak Grove mine,
slickensides on the mine roof bear approx-
imately N. 40° W. (fig. 15), and the faults and
slickensides give a sense of northwest-directed,
bedding-parallei shear.

TOPOGRAPHIC LINEAMENTS

Topographic lineaments may represent the
surface expression of fracture zones; some of
those zones could have enhanced permeability.
Lineaments pose an interpretive difficulty in pet-
roleum exploration, however, because they are
surface features. Therefore, the origin of a given
lineament is difficult to interpret unless it can be
related to a specific geologic structure. The
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Figure 19.--Sketch of polished coal slab from the Jagger mine showing relationship
of fractures to bright and dull coal bands.

following discussion is a general account of
lineament populations in the Black Warrior
basin of Alabama. Results indicate that deter-
mining the origin of lineaments is difficult and
that caution should be applied in using line-
ament analysis for developing coalbed-methane
exploration and production strategies. However,
advanced image-analysis techniques, which
were not employed in this study, may provide
insight into the utility of remotely sensed data in
strategic well siting.

The Landsat lineament map of the Black
Warrior basin (fig. 20) contains more than 90
percent northeast (N. 20° E. to N. 70° E.) and
northwest (N. 20° W. to N. 70° W.) lineaments. As
a rule, therefore, these lineaments span only 56
percent cf the compass. Although a regional
lineament map may demonstrate the general
topographic grain of a sedimentary basin, such
maps are of limited use for petroleum ex-

ploration, because most lineaments are too
short to be shown. Moreover, lineaments are
plotted differently at various map scales, and as
a rule, more lineaments with shorter length are
identified at a map scale of 1:24,000 than at a
map scale of 1:250,000.

Like the basin, Oak Grove field contains
dominantly northeast and northwest lineaments
(figs. 21 through 23). Landsat and SLAR linea-
ments (scale 1:250,000) are generally longer
than 1 mile, whereas orthophotoquad linea-
ments (scale 1:24,000) are generally shorter than
0.5 mile; the difference in lineament length re-
flects a difference in imagery scale (figs. 21, 22).
Comparison of rose diagrams establishes that
each type of imagery yields different lineament
populations (fig. 23). Northeast lineaments
comprise more than 80 percent of the Landsat
population, whereas northeast and northwest
lineaments are evenly distributed on the



23

5 4 3 2 R.1W.R.1E

R.15W. 14 18 12 11 10 9 8 7 (-]
R ~+ + +\ \ o+

MA(RION'\%' Ty, Dawmston < ] Y
AN )

»o-

14

15

16

17

18

19

20
+
21

+
T.
22
S.

§ 4 3 _ 2 RIWRIE

COALBED-METHANE FIELDS

. PLEASANT GROVE

. OAK GROVE

. BROOKWOOD

. HOLT

. CEDAR COVE N

. DEERLICK CREEK

. PETERSON

. CARROLLS CREEK
BLUE CREEK

0 10 Miles
s e s gt 2 |

\ \
H\
SIOTMMOOm>

\

22 [ imir OF STUDY
21 | SUMTER GREENE
T.

20
N.

EXPLANATION
~ LINEAMENT

Figure 20.--Lineaments from Landsat bands 6 and 7 scenes, Black Warrior basin, Alabama.



24

R6W R6WIRSW

N Trs
T18s

- -
- -
~
la

-
?
..
.
7
/
N
~
~
]
/
/
-

T18s

T19s

EXPLANATION

~
“ Lineaments from SLAR mosaic

\ Lineaments from Landsat Bands 6 and 7

T19S |\

\
\ JEFFERSONCOUNTY \
31 —— 32— - 33 34
TUSCALOQSAICOUNTY
N \ l T19S
\
R6W R6W

Figure 21.--Lineaments from Landsat and SLAR, central Oak Grove field.



75 A\ - T
51 \\¥ ~ SN /x A T18s
. \// / N NS NS F
o - \3\/1// 3 \/\J 1 >\//\\6 //\‘;/\/ﬁ,/
T ~ AN RSW

NN S S XN AN T
“ %é\ /. /\ ' \}\( \\/ / R

- § e N 12 f 7/ \ \K\
N AN N Ay AN / \

N \ ’(/ / \\/ \>’\
REW /\\ N e // < \(/ ~ \\ \\
< _ ] P \/ 7 [ -~ ,/
T TN [ AT L YL
;y\w \//\ 21 \ \ 24 / |9/\/\ \//// ( 21/
) N\ //\ \ -
AR VT SRR B SR AR A e A
<\\ N A NN S N X W AN,
% S8 AN B I AN VAN
)& N N /Bj P N N ' \/
~ PANRTS \// 2 A AK'GROVE UNDERSRGUND MINE, ¢ A /\

7/
/——L-'/\/

\GI.I,/ X 317 32 ><
Y INCE L -
K .1

T18S
T 39% e
AN E v
Y <
- DV 6/
N <L
s ~
A /
REWIRSW RSW
> SCALE
1 2 Miles
1 - |
~
EXPLANATION

S~ Lineaments from orthophotoguads

T19s

T19S

R6W

Figure 22.--Lineaments from orthophotoquads, central Oak Grove field.

T18s
T19s



26

NORMAL FAULTS o 10 O 10

o 20
N 3 SET 1 JOINTS, SYSTEM A
SET I JOINTS, SYSTEM B N\ 2
% FACE CLEAT, SYSTEM A
S X n=56
o 3
e 2
Wo T 1 o E
® 3 25 20 15 10 5 5 10 15 20 25 80 &
LANDSAT READINGS

NORMAL FAULTS 20 10 O 10

20
o 30 SET I JOINTS, SYSTEM A
SET I JOINTS, SYSTEMB  ® %
S g,  FACE CLEAT, SYSTEMA
s 2 n =333
R 3
3 B
Wo 111 11 1 ‘ “9 E
o 100 50 50 100 i
SLAR READINGS
NORMAL FAULTS w0 0 g9
2 20
N 30 SET I JOINTS, SYSTEM A
SET I JOINTS, SYSTEMB  ® %
¢,  FACE CLEAT, SYSTEMA
O [-;)
© ° n = 351
R 3
3/ e
Wo 1t 11TVl le E
o 60 50 40 30 20 10 10 20 30 40 650 60 o
ORTHOPHOTOQUADS  EAPINGS

Figure 23.--Rose diagrams showing relationship of lineaments to vector-mean azimuths of major
geologic structures, central Oak Grove field.



orthophotoquads; SLAR imagery shows three
peaks at N. 55°W., N. 25°W., and N. 55°E.

Relating lineament trends to structural
trends is difficult. Orthophotoquad lineaments
correspond with the vector-mean joint, cleat,
and fault orientations, but lineament popula-
tions representing each type of structure are not
separable from each other (fig. 23). Landsat and
SLAR data have peaks that match the vector-
mean azimuth of set | joints of system B, and the
SLAR peak at N. 25° W. corresponds approx-
imately with vector-mean fault orientation.
However, normal-fault orientation ranges from
N. 8° W. to N. 43° W,, so the origin of the SLAR
peak is enigmatic.

More lineaments in central Oak Grove cor-
respond with the face cleat of system A than any
other type of structure (fig. 23). Cleat is re-
stricted to coal, however, and thus probably
does not have a significant effect on surface top-
ography. Rather, lineaments oriented between
N. 50° E. and N. 70° E. have been interpreted as
part of a lineament set that extends from Missi-
ssippi to Georgia that also occurs in Cretaceous
and younger deposits; these lineaments coincide
locally with open fracture systems and enhanced
water yield from wells drilled in various
stratigraphic intervals (Richter, 1990).

INTERPRETATION
OF STRUCTURAL HISTORY

ALLEGHANIAN FOLDING

Appalachian folds and thrust faults (figs. 7,
8) evidently formed in Pennsylvanian and Per-
mian time in response to compressional forces of
the Alleghanian orogeny (Thomas, 1985a,
1988b). The major folds in the eastern part of
the basin apparently are detached structures
(Rodgers, 1950; Thomas, 1985a, b). The Blue
Creek anticline and syncline are thought to over-
lie the frontal ramp of an upper-level decolle-
ment in Mississippian or Pennsylvanian strata
that may be a splay of the major thrust faults of
the Birmingham anticlinorium. In contrast, the
Sequatchie anticline has been interpreted to
have developed at a frontal thrust ramp of a
basal decollement in Cambrian shale below the
Coalburg syncline. Lack of surface detachment in
Oak Grove field indicates that the thrust asso-
ciated with the Sequatchie anticline is blind near
the terminus of the anticline.
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Inclined fractures in coal of the Blue Creek
anticline and syncline (fig. 19) evidently formed
by bedding-plane slip during Alleghanian fold-
ing. Occurrence of inclined fractures in the Blue
Creek coal bed in the Coalburg syncline suggests
a similar mode of formation and also suggests
that the thick coal acted as a minor decollement
zone during thrusting. Back-thrust structures in
the Blue Creek and Sequatchie anticlines also
appear to represent small-scale adjustments to
regional folding.

NORMAL FAULTING

Predominance of horst-and-graben structure
in the Black Warrior basin of Alabama (fig. 7) in-
dicates a genesis related to extensional tecton-
ics. In Mississippi, the faults closely parallel the
Ouachita orogenic belt, and fault displacement
increases toward the orogenic front. Therefore,
the extensional faults appear to have formed
during rapid subsidence caused by Ouachita
thrust and sediment loading (Hines, 1988).
Synsedimentary movement of normal faults in
Alabama during the Pennsylvanian has been
suggested (Weisenfluh, 1979; Weisenfluh and
Ferm, 1984; Epsman and others, 1988; Pashin
and others, 1989), and new evidence based on
sandstone and coal occurrence is presented later
in this report. However, it is unclear whether
faulting was initiated during Ouachita
orogenesis or whether some of the faults have
pre-Alleghanian precursors.

Termination of Appalachian folds at normal
faults in Oak Grove field (fig. 10) indicates that
some faults define transcurrent pull-apart struc-
tures that mark the limit of the master decolle-
ment below the Coalburg syncline. This hypo-
thesis is supported by evidence for strike-slip
motion along faults in the Oak Grove mine (fig.
15). Reverse reactivation of some faults, like the
one in eastern Brookwood field, may also be
related to pull-apart tectonics.

Absence of Triassic and Jurassic strata in the
Black Warrior basin makes post-Alleghanian
structural history uncertain. Extensional faulting
may have recurred during the Mesozoic but
must have ceased before the Late Cretaceous,
because normal faults have not displaced Upper
Cretaceous strata (figs. 7, 8, 13). Extensional tec-
tonics related to the opening of the Gulf of
Mexico and subsidence of the Mississippi Embay-
ment are generally thought to be the principal
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cause of tilting and burial of the western part of
the Black Warrior basin (Klitgord and others,
1983; Thomas, 1988b). The structural contour
map of the post-Pottsville unconformity surface
(fig. 13) indicates that only southwest basin
tilting has occurred since the Late Cretaceous.

JOINT AND CLEAT FORMATION

Orthogonal fracture systems, including joint
and cleat systems, have been interpreted to be
extension-release systems with the dominant set
resulting from extension perpendicular to the
maximum horizontal compressive stress and the
subordinate set developing as stress-release
fractures (Griggs and Handin, 1960; Nickelsen
and Hough, 1967; Engelder, 1985). The fracture
pattern of the Black Warrior basin indicates that
joint and cleat systems are genetically related
(fig. 17). The difference in orientation of the
regional joint and cleat systems (systems A) sug-
gests that the regional stress field rotated
approximately 15° during fracturing. However,
the direction of rotation and the relative timing
of joint and cleat development are unclear, be-
cause crosscutting relationships between joint
and cleat systems are inconclusive.

Restriction of joint and cleat systems B to the
area of the Appalachian folds and thrust faults
(fig. 17) suggests that fracturing was related to
orogenesis (Murrie and others, 1976; Ward and
others, 1984). This hypothesis is supported by the
orthogonal relationship between set | joints of
system B and the curving axial trace of the
Sequatchie anticline. Moreover, occurrence of
system B joints farther west in the subsurface
than at the surface suggests that the joint system
plunges with the anticline. Cleat system B may
have a genesis similar to that of joint system B,
but the cleat did not propagate very far north-
west and may have been controlled mainly by
stress release associated with the Blue Creek
anticline and other thrust-related structures
along the southeast basin margin.

Aithough crosscutting relationships be-
tween joint and cleat systems B are inconclusive,
crosscutting relationships between the two cleat
systems suggest that cleat system B is younger
than system A. Therefore, cleat system A pre-
ceded Appalachian thrusting and apparently is
the product of a regional, northeast-oriented
compressive stress field; that stress field may
have been related to Ouachita tectonism (Ward,

1977, Ward and others, 1984). Similarly, form-
ation of the regional joint system (system A) also
may have preceded Appalachian thrusting.

The orientation of unloading joints is con-
trolled either by a residual strain in the rocks
from an earlier tectonic event or by the orien-
tation of the maximum horizontal compressive
stress axis in the contemporary stress field
(Engelder, 1985). Crosscutting relationships indi-
cate that set | joints are commonly older than set
Il joints, and abundance of set Il joints at the
surface relative to the subsurface suggests that
set Il joints are unloading structures. The orien-
tation of set | joints of system A deviates by as
much as 30° from the orientation (approximately
N. 75° E.) of the modern compressive stress field
(Engelder, 1982; Park and others, 1984). Hence,
the orthogonal relationship between the two
joint sets suggests that the orientation of un-
loading joints is controlled by older set | joints
rather than by the modern stress field.

SEDIMENTOLOGY: MODELS OF
COAL OCCURRENCE

Pennsylvanian sedimentation in Alabama re-
flects the evolving structural framework of the
Black Warrior basin, and the following dis-
cussion focuses on formulating sedimentologic
models of coal occurrence that can be applied in
coalbed-methane exploration and production.
Modeling coal occurrence is vital to successful
recovery of Alabama's coalbed-methane re-
sources, because it provides a predictive frame-
work that is advantageous in exploration and
production planning. The objective of this sec-
tion is to develop models of coal occurrence for
the Black Warrior basin in Alabama at three sep-
arate scales and to demonstrate the utility of
different approaches to sedimentologic basin
analysis in coalbed-methane exploration and
production. The first section is a regional sedi-
mentologic basin analysis of the Black Creek-
Cobb interval in Alabama. The second section is
a detailed outcrop study of the Mary Lee coal
group along the Blue Creek anticline and syn-
cline. The final section is a detailed subsurface
investigation of Oak Grove field.

Regional sedimentologic analysis can be
used to identify major facies relationships, to
evaluate coal occurrence, and thus, to identify
prospective areas for coalbed-methane devel-
opment. This approach is applicable to most



basins, such as the Appalachian basin, which
contain numerous conventional petroleum wells
that provide an adequate database for regional
basin analysis of coal-bearing strata. Outcrop
study may be used to identify specific depo-
sitional systems and to develop predictive
depositional models, especially with regard to
coal thickness, continuity, and geometry, that
may be applied to the subsurface during early
stages of coalbed-methane development. From
adriller’s perspective, study of coal occurrence in
coalbed-methane fields may be the most im-
portant aspect of sedimentologic analysis be-
cause it provides detailed information to char-
acterize and predict coal-body thickness and
geometry, and hence reservoir distribution.
Field-scale study of coal occurrence is useful for
resource assessment, strategic well siting, and
identifying completion targets.

REGIONAL COAL OCCURRENCE

Regional sedimentologic analysis includes
constructing a general, cycle-based stratigraphic
framework for correlation and mapping, deter-
mining major facies relationships, and eval-
uating basin-scale patterns of coal occurrence.
This approach may be used to identify the

nature and location of coal resources and is thus

key to implementing a successful exploration
and production program for coalbed methane.
The following discussion is a regional sedi-
mentologic analysis of the Black Warrior basin in
Alabama and is based primarily on data from
geophysical well logs. A similar approach may be
employed in most other eastern coal basins,
including the Appalachian and lllinois basins,
which contain numerous conventional petro-
leum wells.

Few geophysical data had been available to
characterize facies relationships and basin
evolution in southeastern Tuscaloosa and west-
ern Jefferson Counties, but in the past 5 years,
coalbed-methane exploration in this area has
provided a voluminous data base. Earlier studies,
which did not have the benefit of data from
coalbed-methane wells, provided evidence that
Ouachita tectonism caused subsidence of the
Black Warrior basin and alsc supplied most
basin-filling sediment (Ferm and others, 1967;
Cleaves, 1981; Thomas and Womack, 1983;
Sestak, 1984; Hines, 1988; Thomas, 1974; 1988a).
However, new data from coalbed-methane weils
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have augmented existing knowledge of the
sedimentologic and tectonic evolution of the
Black Warrior basin by providing evidence for
subsidence and sediment sources related to
Appalachian tectonism.

Results of regional sedimentologic analysis
in the Black Warrior basin of Alabama establish
that coal beds in the cyclic Black Creek-Cobb in-
terval are most abundant in southern Tuscaloosa
and western Jefferson Counties. Occurrence of a
major coal resource base in this area is inter-
preted to be related to a proximal sediment
source that helped maintain fluvial-deltaic plat-
forms which were protected from marine influ-
ence. West of those platforms, peat (coal) could
accumulate only late in deposition of each cycle
when most or all of the study area was
emergent. ’

METHODS

Density logs are available for wells through-
out the Black Warrior basin in Alabama and pro-
vide the principal data base for regional inves-
tigation of the Black Creek-Cobb interval (fig. 6).
Four rock types were distinguished using density
logs that were calibrated with cores, cuttings,
and drillers logs on the basis of variation in the
gamma-ray, bulk-density, density-porosity, and
neutron-porosity signatures (figs. 5, 24). The
rock types are (1) coal, (2) mudstone, (3) lithic
(nonporous) sandstone, and (4) quartzose
(porous) sandstone.

Coal is distinctive on well logs because of
low bulk density and gamma count and because
of high density and neutron porosity (figs. 5, 24).
Mudstone contains the highest proportion of
clay and mica of any rock type in the Pottsville
and thus has a moderate to high gamma count.
Lithic sandstone is characterized by low gamma
count, and the density-porosity and neutron-
porosity curves do not cross owing to very low
porosity and gas content. Quartzose sandstone
has an extremely low gamma count, apparently
because of a lack of clay minerals, and the
density-porosity and neutron-porosity curves
cross because it is porous and commonly con-
tains gas; crossing of the curves is a reliable dis-
tinguishing feature. Whereas quartzose sand-
stone typically has a blocky log signature, lithic
sandstone has a variable signature.

Quartzose sandstone varies compositionally
from quartzarenite to sublitharenite (Mack and
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Figure 24.--Sample gamma-ray-density log showing relationship between
log signature and lithology.

others, 1983; Raymond and others, 1988; Ray-
mond, 1990). Lithic sandstone is dominant in the
upper Pottsville, contains a high proportion of
argillaceous and low-grade metamorphic rock
fragments, and is compositionally litharenite
(Graham and others, 1976; Mack and others,
1983). Several workers in Alabama have inter-
preted quartzose sandstone to have formed in
marine and marginal-marine environments,
whereas lithic sandstone, which is closely asso-
ciated with economic coal beds, has been inter-
preted to have formed in fluvial and deltaic en-
vironments (Ferm and others, 1967; Hobday,
1974; Horne and others, 1976, Cleaves and
Broussard, 1980; Horsey, 1981).

To determine stratigraphic relationships in
the Black Creek-Cobb interval, cross sections (fig.
6) were made using the top of the Pratt coal
group as a datum. Next, cycles were defined on
the basis of a thick mudstone unit at the base of
each cycle and the presence of a coal or sand-
stone bed at the top of each cycle. The top of the

Fayette sandstone of the lower Pottsville
(Epsman, 1987) was used to mark the base of the
study interval. Finally, the following subsurface
maps were made for each cycle: (1) cycle iso-
pach, (2) lithic-sandstone isolith, (3) quartzose-
sandstone isolith, and (4) coal abundance. iso-
pach and coal-abundance maps also were made
for the combined Black Creek-Cobb interval.
Only selected maps are presented in this paper,
and a complete map set is available in Pashin
and others (1990).

Regional coal-isolith maps were not con-
structed because density-log signature is in-
consistent with respect to coal thickness. Al-
though high-resolution geophysical logs in the
degasification fields may be used for localized
isopach maps, conventional logs can be
deceptive because of fast logging speed and
large source-receiver spacing. Therefore, re-
gional coal-abundance maps, or maps showing
the number of coal beds, provide an estimate of
coal resources.



STRATIGRAPHIC ARCHITECTURE

Cross sections show the five cycles of the
Black Creek-Cobb interval in Alabama (figs. 6, 25
through 31). in eastern Tuscaloosa and western
Jefferson Counties, simple coarsening-upward
cycles culminate in coal groups. However, defin-
ing the base of the Mary Lee cycle is difficult in
parts of Fayette and Lamar Counties because the
basal mudstone is thin and Mary Lee quartzose
sandstone occurs in close proximity to Black
Creek quartzose sandstone. Locally, the top of
the Mary Lee cycle is also difficult to identify in
well logs because a sandstone or coal marker is
absent. Although these relationships suggest
intertonguing between the Mary Lee and
Gillespy/Curry cycles, outcrop evidence demon-
strates that the two cycles are separated by a
marine-flooding surface that locally truncates
Mary Lee strata (Liu, 1990a, b; Demko, 1990a).

Cycle thickness is fairly uniform along the
southwest-northeast cross sections (figs. 25
through 27), whereas the cycles thicken mark-
edly toward the southeast in the northwest-
southeast cross sections (figs. 28 through 31)
Lithic sandstone is dispersed throughout the
upper part of most cycles but is thickest between
the mudstone- and coal-bearing intervals of the
Gillespy/Curry and Cobb cycles. Quartzose sand-
stone occurs in the Black Creek, Mary Lee, and
Cobb cycles. In the Black Creek cycle, quartzose
sandstone is below the coal-bearing strata in the
northwest part of the study area, but in the
south and east, the sandstone extends into the
middle of the coal group (fig. 29). In contrast,
quartzose sandstone generally underlies the
coal-bearing part of the Mary Lee cycle in the
northwest part of the study area, although
localized lenses are dispersed throughout the
section (figs. 28 through 31). In Lamar County,
the Cobb cycle contains a localized quartzose
sandstone body (fig. 29).

Coal is restricted to the upper part of the
cycles, and the number (0 through 20) and con-
tinuity of the beds vary (figs. 25 through 31).
Some beds, such as those in the Gillespy/Curry
cycle, are traceable throughout most of the
basin in Alabama and are useful stratigraphic
markers. Other beds, such as many in the Black
Creek cycle, only occur locally. The northwest-
southeast cross sections (figs. 28 through 31)
demonstrate that coal beds are most abundant
where cycles are thickest along the southeast
margin of the basin.
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CYCLE THICKNESS

The Black Creek-Cobb isopach map illus-
trates the overall geometry of the study interval
(fig. 32). The interval thickens from Lamar and
Fayette Counties toward the south and south-
east. Thickening is greatest south of the 1,500-
foot contour which defines an arcuate trend of
thick sediment that extends from Tuscaloosa
County into Mississippi. In the southwestern-
most part of the study area, the Black Creek-
Cobb interval is thicker than 2,400 feet. .

Although the Black Creek-Cobb isopach map
depicts a simple, arcuate thickness trend,
individual cycle-isopach maps establish that cycle
thickness varied systematically with time. For
example, the Black Creek cycle contains more
than 700 feet of sediment in a depocenter that
was located in southeastern Tuscaloosa County
(fig. 33). The Gillespy/Curry cycle, however, is
characterized by a sublinear depoaxis (area
southeast of the 400-foot contour, fig. 34) that
extended across the southeastern part of the
study area. The depoaxis of the Cobb cycle (area
south of the 350-foot contour), was arcuate and
similar in geometry to that of the composite
Black Creek-Cobb interval (figs. 32, 35).

Sequential variation of cycle thickness with
time (figs. 33 through 35) provides a record of
subsidence history and foreland-basin evolution.
Contours on the Black Creek-Cobb isopach map
are strongly oblique and in places perpendicular
to those on the structural contour-map, indi-
cating that the present basin differs structurally
from that which existed during Pottsville depo-
sition. The Black Creek depocenter indicates that
subsidence in the study area was for a time
dominated by Appalachian tectonism. Expan-
sion of the depocenter into an arcuate depoaxis,
however, suggests increasing influence of
Ouachita orogenesis in Alabama during Black
Creek-Cobb deposition. Cycle-isopach maps
demonstrate systematic merging of the Black
Creek depocenter with the trough of subsidence
that persisted throughout most of the Carbon-
iferous adjacent to the Ouachita orogen in
Mississippi.

LITHIC-SANDSTONE DISTRIBUTION
Although cycle thickness varied in time and

space, regional lithic-sandstone distribution
varied little among the cycles. Comparison of the
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Mary Lee, Gillespy/Curry, and Pratt maps (figs. 36
through 38) establishes that lithic sandstone is
consistently thickest in southeastern Tuscaloosa
County. Each map shows two major lobate to
elongate sandstone axes; one is in eastern Tusca-
loosa County, and the other is in southwestern
Tuscaloosa County.

Faulting apparently controlled lithic sand-
stone distribution. In each cycle, the south-
western depositional axis occurs southwest of a
series of major faults (figs. 36 through 38). In the
Gillespy/Curry cycle, parts of the elongate, bi-
furcated trend outlined by the 50-foot contour
in western Tuscaloosa and northern Pickens
Counties follow faults, and the southwestern
part of the bifurcated trend terminates at a
fault. Similar structural control of sandstone
occurrence is apparent in the Pratt cycle and to a
lesser extent in the Mary Lee cycle.

Some lobate and elongate sandstone bodies
may represent major fluvial-deltaic systems (fig.
39) that prograded northwest. In the Gilles-
py/Curry cycle, for example, the elongate, bi-
furcated trend (fig. 37) may be interpreted as a
deltaic lobe analogous to the modern bird-foot
lobe of the Mississippi Delta (Gould, 1970). A
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similar elongate trend in the Pratt cycle (fig. 38)
suggests that the trunk channel of the deltaic
system was reactivated.

In the Mary Lee and Pratt cycles (figs. 25
through 31), several coal beds are interspersed
with lithic sandstone and extend well beyond
the lobate trends, suggesting that some trends
represent differentially subsiding fluvial axes
rather than deltaic distributary systems. Addi-
tionally, mapping of individual sandstone bodies
in the Mary Lee cycle of Oak Grove field (see
section on fluvial and structural control of coal-
body geometry) indicates that tributary chan-
nels in the easternmost part of the northeastern
sandstone lobe were directed west, suggesting a
more westwardly paleoslope than is readily
apparent in the sandstone isolith maps. More-
over, muddy depositional systems that are diff-
icult to recognize in the subsurface, such as estu-
aries and tidal flats (fig. 39), have been rec-
ognized in outcrop (Demko, 1990a, b; Liu,
19903, b).

Isolith maps indicate that lithic-sandstone
distribution represents a composite of fluvial
and marginal-marine depositional systems. Con-
stancy of lithic-sandstone distribution despite
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Figure 39.--Depositional model for the Black Creek-Cobb interval, Black Warrior basin, Alabama.

changing cycle-isolith patterns suggests that
regional sand supply and dispersal in Alabama
were largely independent of the changing sub-
sidence pattern. Persistence of thick, lobate
sandstone bodies in southeastern Tuscaloosa
County provides evidence that a major proximal
sand source lay in the Appalachian orogen (fig.
39). Thick lithic sandstone in the Mary Lee cycle
of southwest Lamar County apparently was
derived from a deltaic complex in Mississippi
that had a Ouachita source (Sestak, 1984).

QUARTZOSE-SANDSTONE
DISTRIBUTION

In the Black Creek cycle, a major quartzose-
sandstone belt defined by the 50-foot contour
extends northeast from Sumter County to east-
ern Fayette County (fig. 40). Locally, sandstone
in this belt is thicker than 100 feet. Quartzose
sandstone commonly is absent immediately
northwest of the belt, but an irregular
quartzose-sandstone body that is locally thicker
than 200 feet occurs in Lamar County. This
irregular body terminates abruptly along a fault
zone in western Lamar County; southwest of this
zone, all or most of the lower Pottsville

quartzose-sandstone units are absent (Engman,
1985), and Mary Lee lithic sandstone is thicker
than 100 feet (fig. 36).

Quartzose sandstone in the Mary Lee cycle
occurs in a series of distinct, geographically re-
stricced bodies (fig. 41). Thick Mary Lee
quartzose sandstone coincides with thick Black
Creek quartzose sandstone in central Pickens
County and in eastern Fayette County. In con-
trast, thick Mary Lee quartzose sandstone in
southwest Fayette County occurs in a distinctive
southwest trend and is thicker than 50 feet
where Black Creek quartzose sandstone is thin
or absent.

Black Creek quartzose sandstone has been
interpreted to represent fluvial-deltaic systems
in the subsurface (Sestak, 1984; Thomas, 1988a)
and beach-barrier systems in outcrop (Shadroui,
1986). The quartzose-sandstone belt parallels
depositional strike as determined from cycle-
isopach and lithic-sandstone isolith maps (figs.
36 through 38) and is thus interpreted as a
marginal-marine deposit in the subsurface (fig.
39). The narrow northeast part of the belt has
the plan-view geometry of a barrier-island com-
plex, whereas the broad southwest part of the
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belt resembles shoreface deposits derived from
the barrier system by longshore drift.

Although earlier investigators have inter-
preted quartzose sandstone as a beach-barrier
deposit, new subsurface and outcrop evidence
indicate that some quartzose sandstone was
deposited in open-marine environments (Pashin
and others, 1990, 1991; Demko, 1990a, b). The
location, thickness and irregular geometry of
the Black Creek quartzose sandstone body in
Lamar County (fig. 40) is suggestive of a struc-
turally influenced open-marine sand bank (fig.
39). The thickness and stratigraphic position of
the sandstone in Lamar County suggests that the
area was a persistent site of shoaling, and south-
eastward extension into the middle of the Black
Creek coal group suggests that the shoal area
expanded in response to marine transgression.

Sedimentary structures in outcrops of Mary
Lee quartzose sandstone are characteristic of
open-shelf sand banks, including sand waves
and sand ridges, that migrated southwest and
have been modified into barrier islands (Demko,
1990a, b; Pashin and others, 1991). Offset of
Mary Lee and Black Creek quartzose sandstone
bodies (figs. 40, 41) demonstrates the import-
ance of relict topography and differential com-
paction on the distribution of open-shelf
bedforms. Coincidence of thick Mary Lee and
Black Creek quartzose-sandstone bodies in
central Pickens County and eastern Fayette
County are interpreted to be the result of shoal-
ing on inherited topographic highs, whereas off-
set sandstone bodies, like those in southern
Fayette County, are interpreted to be the result
of currents that were restricted to topographic
lows.

Much quartzose sandstone may have the
same source as lithic sandstone, because quartz-
ose sandstone can be a product of the destruc-
tion of labile grains by marine reworking (Mack
and others, 1983). However, southwest crossbed
orientations have consistently been recorded
from quartzose sandstone in outcrop through-
out the Appalachian region (Horne, 1979).
Moreover, Mary Lee lithic sandstone contains
abundant chert grains, whereas Mary Lee
quartzose sandstone generally lacks chert
(Raymond, 1990). Therefore, some sand may
have been transported southwestward into the
basin from distal orogenic sources by tides and
longshore drift.
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COAL DISTRIBUTION

Coal in the Black Creek-Cobb interval is most
abundant in southeast Tuscaloosa County where
more than 40 coal beds occur (fig. 42). However,
fewer than 10 coal beds occur in much of the
northern and western parts of the study area,
and fewer than 5 coal beds occur locally in
northwest Pickens and  southwest Lamar
Counties. Coal-abundance maps of the Black
Creek, Mary Lee, and Pratt cycles (figs. 43
through 45) reflect the regional trend (fig. 42)
and show little change through time. The
Gillespy/Curry and Cobb cycles generally contain
only two coal beds, and coal-abundance maps
for those cycles are available in Pashin and
others (1990). The Black Creek and Mary Lee
cycles lack coal in parts of Lamar and Pickens
Counties, whereas the Pratt cycle contains two
or more coal beds throughout most of the study
area.

A salient characteristic of the upper Potts-
ville is that a regionally extensive marine unit
forms the base of each cycle and a regionally
extensive coal bed or coal group occurs near the
top of each cycle. Therefore, the cycles represent
regional marine-alluvial transitions, and coal in
the Black Warrior basin probably formed in a
range of depositional settings (fig. 39). For
example, localized marginal-marine peat domes,
which may be analogs for localized coal bodies
near the base of some coal groups, are forming
on the Klang-Langat delta-estuary system of
Malesia (Coleman and others, 1970).
Geographically widespread peat bodies, which
may be analogs for the thickest and most contin-
uous Pottsville coal beds, are forming on alluvial
plains in Indonesia (Anderson, 1964, 1983;
Anderson and Maller, 1975). Low-lying, planar
peat accumulations are also forming as much as
70 miles inland between exposed Pleistocene
beach ridges in Georgia (Cohen, 1974) and may
thus be analogs for coal bodies associated with
quartzose sandstone.

CONTROLS ON REGIONAL COAL
OCCURRENCE

Interpretations proposed in this study differ
markedly from those of earlier studies (Ferm and
others, 1967; Cleaves, 1981; Thomas and Wo-
mack, 1983; Sestak, 1984; Thomas, 1988a) which
favored a Ouachita source for most Pottsville
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sediment in the Black Warrior basin. However,
earlier investigators had few data from south-
eastern Tuscaloosa and western Jefferson
Counties and were thus unable to identify with
confidence subsidence centers related to and
sandstone bodies derived from the Appalachian
orogen. ldentifying the effect of Appalachian
and Ouachita tectonism on sediment distrib-
ution in the Black Warrior basin offers explan-
ations for regional patterns of coal occurrence.

Why are coal beds most abundant in
southern Tuscaloosa and western Jefferson
Counties? In short, coal abundance can be re-
lated to proximity to a sediment source and
tectonic subsidence. Three facts stand out with
regard to coal abundance: (1) coal abundance
increases as net lithic-sandstone thickness in-
creases; (2) in Tuscaloosa and Jefferson Count-
ies, coal abundance and net lithic-sandstone
thickness increase as the thickness increases; and
(3) in Greene and Sumter Counties, coal abun-
dance and net lithic-sandstone thickness do not
increase as cycle thickness increases.

Restriction of the thickest fluvial-deltaic lith-
ic sandstone to the southeast part of the study
area reflects proximity to a sediment source and
dominance of fluvial sedimentation. Therefore,
high sediment input and a northwestwardly to
westwardly paleosiope in southern Tuscaloosa
and western Jefferson Counties helped maintain
fluvial-deltaic platforms where peat accumu-
lated. The remaining parts of the study area
were dominated by mudstone and quartzose-
sandstone deposition and thus were far from a
sediment source and were subject to marine in-
fluence. Consequently, peat deposition occurred
only in these distal areas late in each cycle when
most or all of the region was emergent and an
extensive alluvial plain was established.

OUTCROP INVESTIGATION OF THE
MARY LEE COAL GROUP ALONG
THE BLUE CREEK ANTICLINE
AND SYNCLINE

The Blue Creek anticline and syncline (fig. 7)
are in one of the oldest coal-mining areas of
Alabama and lie along the southeast margin of
Oak Grove and Brookwood fields. The Mary Lee
coal group is exposed in mine highwalls along
the anticline and syncline less than 2 miles from
where it is mined and degassed at a depth of

more than 1,000 feet. Each highwall transects
rocks representing a series of depositional sys-
tems and provides a basis for constructing de-
tailed depositional models of coal occurrence.
Therefore, outcrop analysis of the Mary Lee coal
group in proximity to the coalbed-methane
fields provides an excellent opportunity to de-
termine the depositional environment of coal-
bed-methane target strata and to identify small-
scale controls on coal occurrence that are diffi-
cult to discern in the subsurface but may affect
coalbed-methane production.

Results of outcrop analysls indicate that the
Mary Lee coal group of the Blue Creek anticline
and syncline accumuiated in fluvial and swamp
environments. Fluvial environments included
sinuous trunk channels with point bars, muddy
flood plains with lakes, and crevasse splays. Peat
(coal) accumulated in interfluvial swamps, and
interaction between fluvial and swamp
environments is interpreted to be the dominant
control on coal occurrence. Crevasse splays
formed along the flanks of fluvial axes and
therefore controlled coal thickness and geo-
metry locally; splay-related bed splits may be
difficult to predict in the subsurface and thus
have limited significance in coalbed-methane
exploration and production. In contrast, channel
avulsion involved abandonment and establish-
ment of complete fluvial axes and therefore con-
trolled coal thickness and geometry regionally;
avulsion-related bed splits are predictable using
subsurface data and thus may be important for
developing coalbed-methane exploration and
production strategies.

METHODS

Strata of the Mary Lee coal group in the Blue
Creek anticline and syncline were described and
measured using standard field techniques. Dia-
grams of mine highwalls were made that show
the distribution of the various rock types and
sedimentary structures. Modern and ancient
analogs for the Mary Lee coal group were
identified and were used to develop depo-
sitional models that may be applied in subsur-
face analysis. Photographs of the strata des-
cribed below are included in Epsman and others
{1988) and Pashin and Sarnecki (1990).



LITHOLOGY
SANDSTONE

‘Sandstone of the Mary Lee coal group typ-
ically is very fine- to medium-grained and light
to medium gray (N7-N5). The sandstone is well
indurated and contains a variety of lithic frag-
ments that can be distinguished with a hand
lens. In places, argillaceous lithic fragments are
abundant enough that weathered sandstone re-
sembles mudstone. Pebbles and granules of
shale and siderite are common, and platy, un-
banded coal spars were observed in a few layers;
pebbles and cobbles are common near the base
of some sandstone beds. Sideritic root casts were
noted in many layers, and well-preserved fern
fronds are exposed on some bedding planes. On
the basis of bedding style, two major types of
sandstone, channel sandstone and sheet sand-
stone, were recognized.

CHANNEL SANDSTONE

Channel sandstone is variable in terms of
bedding and sedimentary structures. Channel
sandstone is very fine to medium grained and
contains some conglomeratic beds. Although
the style of channel fill varies, two end members
were distinguished: (1) epsilon-crossbedded
sandstone and (2) scour-and-fill sandstone.

Epsilon-crossbedded sandstone (Allen, 1963)
in the Mary Lee coal group occurs in solitary sets
and has a sharp, typically conglomeratic base
and commonly has a heterolithic upper part that
contains both sandy and shaly strata. Major
bounding surfaces that define the crossbeds are
generally traceable from the top of the sand-
stone body to the base; the crossbeds char-
acteristically contain smaller, grouped cross
strata. These features are well exposed in a 23-
foot thick sandstone unit at the lagger mine
(SW1 sec. 28, T. 19 S, R. 5 W.) (figs. 1, 46).
Rooted, heterolithic strata at the top of the set
are exposed at the southwest end of the high-
wall. Epsilon-crossbedded sandstone with a low
crossbed dip angle (less than 2°) occurs in inter-
val C in the northeastern part of the Black Star
mine (SE} sec. 19, T. 19 S., R. 5 W.) (figs. 1, 47).
Here, one epsilon-crossbedded unit truncates
the adjacent sheet sandstone, and another ep-
silon-crossbedded unit truncates the previous
epsilon crossbed.

49

Scour-and-fill structures are ideally U-
shaped, sandstone-filled depressions that trun-
cate subjacent strata. Such structures are wide-

“spread in the Mary Lee coal group and exhibit a
_variety of bedding styles and sedimentary struc-

tures. Scour-and-fill sandstone is well exposed in
the Davis Creek mine (NW4 sec. 19, T. 20S., R. 6

W.) (figs. 1, 48) and Black Star mines (fig. 47).

In the northeast part of the Davis Creek mine
(fig. 48), a channel-sandstone body that is locally
thicker than 30 feet is a composite of multiple
scour-and-fill structures that are individually less
than 15 feet deep. The scour surfaces are lined
with shale and siltstone pebbles, and the dom-
inant sedimentary structures in the scour fills are
tangential crossbeds and current-ripple-drift
cross laminae. Lateral accretion surfaces are
locally present near the southwest margin of the
sandstone body.

Different styles of scour-and-fill are exposed
at the Black Star mine where the structures
range from symmetrical U-shapes with
concentric fills to asymmetrical scalloped forms
resembling epsilon crossbedding (fig. 47); most
of the structures are less than 9 feet deep and 25
feet wide. A few scour fills at the Black Star mine
truncate subjacent strata and contain cross-
bedded sandstone. However, most of the struc-
tures contain alternating sandstone and mud-
stone that resembles sheet sandstone, which is
discussed below, and some beds in the scalloped
structures pass laterally into sheet sandstone and
are associated with lensoid sandstone beds. The
principal difference between scour-and-fill sand-
stone and sheet sandstone at the Black Star mine
is bed geometry. ‘ ‘

At the Jagger mine, two scour-and-fill struc-
tures less than 3 feet deep truncate the upper-
most parts of the epsilon-crossbedded sandstone
(fig. 46). One of the structures has an intensely
rooted, mudstone-rich fill containing irregular,
lensoid sandstone beds. The other is filled with
crossbedded sandstone and is a composite of
several smaller scour-and-fill structures.

SHEET SANDSTONE

Sheet sandstone is very fine- to fine-grained
and occurs in laminae to thick beds that are
separated by mudstone; sheet sandstone is well
exposed at the Black Star and Davis Creek mines
(figs. 47, 48). The sheet-sandstone beds can be
traced laterally for tens, or more commonly,
hundreds of feet and are locally thicker than 4
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feet at the Davis Creek mine. Sheet-sandstone
beds at the Davis Creek mine are wavy and
undulatory, in part due to folding, and several
wavy lensoid beds are exposed at the Black Star
mine.

The sheet-sandstone beds commonly have
sharp basal contacts along which scattered shale
pebbles, siderite pebbles, and plant debris occur.
In several beds, the basal contact is overlain by
horizontal laminae, which are in turn overlain by
current-ripple-drift cross laminae and convolute
laminae. The succession is typically completed
with a gradational, rooted upper contact with
the overlying mudstone. In the thinner beds,
ripple-drift cross laminae predominate, whereas
some of the thickest sheet-sandstone beds have
gradational basal contacts and a variable inter-
nal stratification sequence.

The highwall in the Davis Creek mine shows
clearly some of the relationships between the
sheet sandstone and the scour-and-fill sand-
stone units (fig. 48). At the southwestern end of
the highwall, some sheet-sandstone beds extend
laterally for more than 1,000 feet. To the
northeast, sheet-sandstone beds are truncated
by a major scour-and-fill structure, which defines
the western margin of a channel-sandstone
body that is as thick as 30 feet. The channel
sandstone passes southwestward into the
uppermost thickly bedded sheet sandstone, and
the uppermost part of the channel sandstone in-
tertongues with rooted sandstone and
mudstone near the top of the highwall.

MUDSTONE

Fine-grained rocks in the highwalls generally
range from silty and sandy shale to shaly silt-
stone and are grouped together as mudstone
for convenience. Mudstone is medium gray to
medium dark gray (N5-N4), brittle, and generally
has a poorly developed platy parting or is
nonfissile; the dominant lithologic constituents
are silt- to sand-size quartz grains, mica flakes,
and finely macerated plant debris. Examination
with a hand lens reveals that the grains are set in
an argillaceous matrix that accounts for a
significant volume of the rock.

Mudstone occurs in laminae to thick beds,
and bed geometry varies from even to wavy or
lensoid. Siderite bands and well-preserved fern
fossils are common in thick, laminated beds,
such as those at the Jagger mine (fig. 46). Root-
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ed mudstone is abundant, particularly below
each coal bed and in the thinner mudstone beds,
and most of the root traces are assignable to the
lycopod taxon, Stigmaria. Sideritic root casts,
which commonly have a nodular appearance,
are characteristic of the thinner, intensely root-
ed strata. Intensely rooted mudstone generally
occurs below coal beds and in interbeds be-
tween sandstone. Carbonized plant fossils are
most abundant where root traces are scarce. in
layers dominated by mudstone, particularly in
proximity to thick sandstone beds, sandstone
occurs in even, wavy, or lenticular laminae and
thin beds.

Thick coal beds overlie sandy underclay
containing abundant Stigmaria rootlets. The un-
derclay is very gritty and is lithologically similar
to mudstone. Root traces are pervasive, and
poorly oriented slickensides are developed. The
underclay ranges in thickness from 0.3 foot to
more than 5 feet and is traceable with the coal
beds. Although underclay is sharply overlain by
coal, it commonly grades downward into mud-
stone or sandstone (figs. 46 through 48). Below
the New Castle coal in the Davis Creek and Black
Star mines and below the lagger coal at the
Jagger mine, sandstone and mudstone are
rooted and locally have a nodular appearance,
and discontinuous laminae and thin beds of coal
are locally present in the mudstone.

tn-situ, sand-filled lycopod trunks occur in a
few layers at the Jagger and Black Star mines
(figs. 46, 47), and leaf litter is concentrated less
than 2 feet above those layers. At the Jagger
mine, an erect Sigillaria trunk is rooted near the
upper contact of the Jagger coal, extends up-
ward through approximately 9 feet of laminated
mudstone with siderite bands, and continues
upward through the basal 3 feet of a thick sand-
stone bed (fig. 46). Another layer of in-situ lyco-
pod trunks occurs approximately 1.5 feet from
the base of the mudstone, and another layer
occurs approximately 1.5 feet from the top of
the unit; the middle of the mudstone is fissile
and lacks root traces and lycopod trunks. In
interval B at the Black Star mine, a lycopod trunk
extends upward through 12 feet of interbedded
mudstone and sandstone (fig. 47).

COAL

Coal in the field area is bright banded and
typically forms even, thin to thick beds with well-
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defined contacts. Thick coal beds, like the Blue
Creek bed, contain numerous partings of clay
and bone coal which may impede vertical fluid
flow, but most beds thinner than 1 foot lack
abundant partings. Most coal beds contain alter-
nating thin to thick vitrain and clarain bands
with some fusain layers. At the Jagger mine,
vitrain bands in the lower part of the Jagger coal
are as much as 1 inch thick. The upper 1 to 4
inches of most coal beds are fairly dull, and the
upper contact is commonly less distinct than the
lower contact.

The coal beds generally have uniform thick-
ness and can be traced for the length of a given
highwall (figs. 46 through 48). However, at the
Black Star mine, two fairly thin beds occur at the
level of the Mary Lee coal (fig. 47). The lower
coal bed is subhorizontal and is approximately
1.3 feet thick along the length of the exposure
(2,000 feet). The upper coal bed is undulatory,
sagging slightly above several scour-and-fill
structures. The upper bed is generally 0.3 foot
thick but is 0.6 foot thick in a scour-and-fill
structure where it sags and nearly joins the
lower bed. In a recently reclaimed highwall
approximately 0.5 mile west of the Black Star
mine, the lower Mary Lee coal joins the Blue
Creek coal to form a bed that is as thick as 12
feet and is the thickest coal in the region
{(Epsman and others, 1988).

DEPOSITIONAL MODEL

EPSILON-CROSSBEDDED SANDSTONE:
SINUOUS FLUVIAL CHANNELS

Epsilon crossbedding (figs. 46, 47) is formed
by the process of lateral accretion in a variety of
depositional settings, such as intertidal, deltaic,
and. alluvial environments, but is almost every-
where the product of sinuous channels with
point bars (Allen, 1963, 1965) (figs. 49, 50).
Abundant root traces and plant fossils in the
Jagger and Black Star mines indicate a fluvial
origin for the epsilon crossbeds.

The thickness of an epsilon-crossbed set
provides a reliable estimate of bankfull channel
depth (Allen, 1965; Gardner, 1983). Applying
this principle to sets in the Jagger and Black Star
mines (figs. 46, 47), channel depth exceeded 20
feet. Because epsilon crossbeds at the Jagger
and Black Star mines are thicker than any of the
scour fills in the area, the point bars are inter-
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Figure 49.--Paleocenvironmental model for
Jagger mine. Bar indicates facies sequence
in highwall.

preted to represent major fluvial channels that
provided the primary skeletal framework for the
Mary Lee coal group in the field area.

Lateral truncation of adjacent strata by an
epsilon-crossbed set, as in the northeastern end
of the Black Star mine (fig. 47), indicates preser-
vation of cutbanks (Allen, 1965; Nami and
Leeder, 1978). Near the truncation surfaces and
upward in section, the epsilon sets become sub-
horizontal, suggesting gradual aggradation,
infilling, and abandonment of the channels.
Scour-and-fill structures that truncate the upper
part of epsilon-crossbed sets are commonly
interpreted to be chute fills (Allen, 1965) (figs.
46, 49). At the lagger mine, the muddy, rooted
scour fill indicates that the chute was active only
during high-water stage and that low-water
stage was long enough to allow plant colon-
ization. In contrast, the sandy set of scour fills at
the Jagger mine may represent a more active
chute system that was filled rapidly.
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Figure 50.--Paleoenvironmental model for Black Star and Davis Creek mines. Bars indicate
stratigraphic intervals labeled in figure 47; bar D is transect at Davis Creek mine (fig. 48).

MUDSTONE: LEVEES AND FLOOD
PLAINS

Along channel margins in modern flood
plains, fine-grained sediment is deposited by
overbank flooding. As flood water crosses the
bank, sediment is deposited, and a ridge, or
levee, is built and vegetated (Allen, 1965;
Hughes and Lewin, 1982) (figs. 49, 50). Abun-
dant plant fossils and root traces suggest that
mudstone in the Davis Creek, Jagger, and Black
Star mines formed in a terrestrial setting and,
where in proximity to epsilon-crossbed sand-
stone, may be interpreted as levee and flood-
plain sediment deposited adjacent to rivers.

Layers containing in-situ lycopod trunks, like
those at the Jagger and Black Star mines (figs.
46, 47), have been interpreted to represent fossil
swamp forests that have been preserved by
major floods, and the leaf litter that is concen-
trated above the trunk layers has been inter-
preted to represent dead forest canopy that fell
to the substrate after those floods (Gastaldo,
1986, 1990). The Sigillaria trunk at the Jagger
mine (fig. 46), which extends upward through 9
feet of mudstone, indicates a high sedimenta-
tion rate. However, the unfossiliferous interval
in the middle of the mudstone is interpreted to
represent a flood-plain lake. Flood-plain lakes

may form by ponding of water on flood plains as
a new fluvial system is established and siliciclastic
sediment subsides into rapidly compacting peat.
(fig. 49).

'SCOUR-AND-FILL AND SHEET
SANDSTONE: CREVASSE-SPLAY
SYSTEMS

A crevasse splay is a coarse sediment lobe or
apron that develops where a channel levee is
breached and water spills into a flood basin or-
bay (fig. 50). Although crevasse splays in the
upper reaches of deltas may closely resemble
alluvial splays, most deltaic splays, such as those
on the Mississippi Delta (Arndorfer, 1973), rep-
resent the infilling of marine bays and thus
typically contain indicators of marine processes
(Elliott, 1974). Crevasse-splay deposits in the
field area are interpreted to be alluvial in origin
because they are associated with coal rather
than with marine deposits.

In the proximal crevasse-splay system,
channels erode the breached levee and the
nearby flood plain; scouring and channel filling
are the dominant processes (fig. 50). Distal
reaches of crevasse-splay complexes are
characterized by building of splay lobes and
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filling of flood basins; sheet flow is typically the
most important process. Therefore, fining-
upward, channel-fill dominated sequences are
characteristic of proximal-splay deposits, where-
as coarsening-upward, sheet-sandstone dom-
inated deposits are characteristic of distal splays.
Natural examples most commonly deviate from
this general scheme due to shifting of channel
position as well as abandonment and rejuven-
ation of splay lobes (Guion, 1984; Bridge, 1984).

Scour-and-fill structures and associated
features in the Davis Creek and Black Star mines
can be characterized by crevasse-splay modeis.
Straight channels generally do not shift and
migrate and thus tend to form U-shaped scour-
and-fill structures like those at the highwalls
(Schumm, 1977). The array of scour-and-fill
structures in the Davis Creek mine (fig. 48) is
typical of proximal splay deposits (fig. 50, bar 8).
Although the sandstone is thicker than 30 feet
locally, individual scour fills are scarcely thicker
than 15 feet, so the internal architecture of the
sandstone body is probably a product of coal-
escing splay channels in a subsiding flood basin
near a major break in a levee. Traceability of a
scour fill into one of the thickest sheet-sand-
stone beds (fig. 48) represents an abrupt lateral
transition to sheet flow, perhaps in a protected
area adjacent to a major splay-channel system
and behind an unbroken levee segment (fig. 50).
Some of the splay channels apparently had
levees, because the upper part of the main
channel sandstone intertongues with rooted
sandy mudstone.

Abundant scour-and-fill structures and
sheet-sandstone beds in the middle of the Black
Star mine (fig. 47) are interpreted to represent
the middle part of a crevasse-splay complex

where channelized flow gave way to sheet flow -

(fig. 50). This interpretation is supported by the
lithologic similarity of the scour fills to the
associated sheet sandstone and by the poorly
defined boundaries of some of the scour-and-fill
structures. The scalloped scour-and-fill structures
at the Black Star mine resemble epsilon cross-
bedding, which indicates that some of the
channels were sinuous and had point bars (Nami
and Leeder, 1978). On the basis of the width of
the scalloped fills, the point bars were less than
25 feet wide. Point bars typically develop where
channels are at or near grade (Allen, 1965),
indicating that local relief was low and that the
channels formed a considerable distance into
the flood basin.

The sharp bases, rooted tops, and lateral
continuity of many of the thinner sheet-sand-
stone beds (figs. 47, 48) are characteristic of
classical sheet-flood deposits which are de-
posited by ephemeral, temporarily erosive, wan-
ing flows (Stanley, 1968). Sheet sandstone
similar to that in the field area is widespread in
the distal parts of crevasse-splay sequences in
coal-bearing strata (Horne and others, 1978;
Guion, 1984). Variable stratification sequences
in the thickest sheet-sandstone beds at the Davis
Creek and Black Star mines indicate that flow
was in places irregular; and the gradational
bases of some sheet-sandstone beds, particularly
at the Black Star mine, indicate that flow was
locally semipermanent. Therefore, the thinner
sheet-sandstone beds apparently were deposit-
ed during brief floods, whereas the thicker beds
evidently were deposited during long-term
floods in which flow was more variable.

COAL: PEAT SWAMPS

Thick peat accumulates in swamp areas
protected from siliciclastic sedimentation
(McCabe, 1984, 1987). Outcrop evidence from
the Mary Lee coal group indicates that peat
accumulated in interfluvial swamps in the area
of the present-day Blue Creek anticline and syn-
cline and that fluvial processes were the domin-
ant control on coal distribution and geometry in
the field area. interaction between fluvial and
swamp environments is characterized in the
following discussion and is then synthesized into
a working model of fluvially controlled coal
occurrence that can be applied and tested using
subsurface interpretation.

Evidence from highwalis indicates that
levees were a barrier to sedimentation that per-
mitted swamps to develop close to river banks
and that breaching of levees made parts of the
swamp vulnerable to siliciclastic influx (fig. 50).
Hence, the swamps probably were low lying, or
at least were not domed above the level of the
river banks, because splay deposits were devel-
oped directly on the swamp surface at the Black
Star mine (figs. 47, 50). However, after each
major splay event, swamps were reestablished
on the abandoned crevasse-splay surface. Thus,
development, abandonment, and rejuvenation
of crevasse-splay systems was a control on coal-
bed geometry; similar control has been
recognized in other Appalachian coal-bearing



sequences (Ferm and Cavaroc, 1968; Howell and
Ferm, 1980; Ferm and Staub, 1984).

Near joining of upper and lower Mary Lee
coal beds in a scour-and-fill structure at the
Black Star mine (fig. 47) demonstrates how
abandonment and rejuvenation of splay systems
may affect coal-bed geometry. Thickening of the
bed in the scour-and-fill structure is typical of
coal formed in channels. All of the other scours
at the mine have sandy fill, which is associated
with gradual channel abandonment (Hopkins,
1985), whereas the coal-filled channel indicates
rapid abandonment. Because the bed that fills
the channel is traceable throughout the high-
wall, channel abandonment was evidently syn-
chronous with abandonment of the splay sys-
tem. Northwest of the Black Star mine, joining of
the lower Mary Lee coal with the Blue Creek coal
by simple pinchout of the intervening clastics is a
classic outcrop-scale example of crevasse-splay
control of coal-bed splitting.

The uppermost crevasse-splay sequence be-
tween the upper Mary Lee and New Castle coal
beds at the Black Star mine is truncated by
epsilon-crossbed sets (fig. 47), indicating devel-
opment of a major, sinuous fluvial channel in
the splay area. A splay channel commonly pro-
vides an avulsion site for the fluvial channel that
fed it (Allen, 1978; Smith and others, 1989), so
the epsilon crossbeds are interpreted to have
formed by avulsion, or diversion, into the flood
basin of the main fluvial channel that fed the
splay systems (fig. 50). Development of the thick
epsilon-crossbed set between the Jagger and
Blue Creek beds at the Jagger mine (fig. 46) may
be interpreted as another example of a fluvial
channel that was diverted into a swamp area.

IMPLICATIONS FOR SUBSURFACE
STUDIES

Applying fluvial sedimentation models to
Pottsville coal groups is useful in coalbed-meth-
ane exploration and production because it pro-
vides a conceptual framework for predicting
coal distribution and thickness. In the Mary Lee
coal group of the Blue Creek anticline and syn-
cline, crevasse splays formed along the flanks of
fluvial axes and thus controlled coal thickness
and geometry locally. For example, splay-related
bed splits are observable in outcrop. However,
small-scale bed splits may not be identified easily
or correlated for a significant distance using
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data from coalbed-methane wells, which gener-
ally have an effective spacing between 40 and
160 acres. Also, channel-fill coal is commonly
thicker than adjacent coal and may therefore
have enhanced coalbed-methane potential.
Most channel-fill coal bodies, particularly those
related to crevasse splays, are small and difficult
to target in the subsurface. Even so, large-scale
valley channels, which are discussed in the
following section, contain some of the thickest
and most gas-productive coal beds in the Black
Warrior basin.

Channel avulsion involves shifting of major
fluvial channels and flood basins and is there-
fore, in contrast to crevasse-splay control, a
regional control on coal-bed geometry. Hence,
avulsion-related bed splits may be identified
readily using subsurface data and thus may be
critical in formulating successful coalbed-meth-
ane exploration strategies. According to the
avuision model (Ferm and Cavaroc, 1968), thick
coal beds should occur between contempor-
aneous fluvial axes which may be identified by
mapping sandstone trends. However, compac-
tion of thick peat between fluvial axes provides
considerable accommodation space for succes-
sive fluvial deposits to accumulate. Therefore,
axial fluvial deposits are commonly deposited
above thick peat (coal) beds following channel
avulsion, resulting in juxtaposition of thick coal
and sandstone bodies.

A CASE STUDY OF FLUVIAL AND
- STRUCTURAL CONTROL OF
COAL-BODY GEOMETRY: OAK

GROVE FIELD

In addition to fluvial control of coal-body
geometry, structural contro! of coal-body geo-
metry by synsedimentary movement of normal
faults has been recognized in outcrops of the
Appalachian region (Horne and others, 1978).
Hence, interplay of structural and fluvial pro-
cesses may be a crucial concern in exploration
and production planning. in the Black Warrior
basin of Alabama, which contains abundant
horst-and-graben systems, core data from
underground mines have been used to identify
structural control of coal-body geometry (Weis-
enfluh and Ferm, 1984). According to this
structural model, the thickest coal beds occur in
upthrown fault blocks; the coal splits and thins
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in the adjacent downthrown blocks (Weisenfluh
and Ferm, 1984; Epsman and others, 1988; Ferm
and Weisenfluh, 1989; Pashin and others, 1989).

Although most sedimentologic studies of
coal distribution in the eastern United States
have stressed outcrop and core data (Horne and
others, 1978; Ferm and Staub, 1984), many
eastern coal basins contain abundant oil-and-
gas data, particularly geophysical well logs (fig.
5). These logs can be used to test existing models
and to formulate new models of fluvial and
structural control of coal occurrence. One ad-
vantage of using geophysical well logs is that
depositional models can be formulated by
evaluating several depositional cycles in a given
area. The advent of coalbed methane as an
energy resource, moreover, has made formulat-
ing such models timely and practical because
they can be used for resource assessment,
strategic well siting, and selecting completion
targets. Results of subsurface analysis in Oak
Grove field demonstrate that styles of coal
occurrence differ in each depositional cycle and
are the result of interwoven sedimentologic,
tectonic, and biologic processes.

METHODS

High-resolution (20-inch) density logs are
abundant in Oak Grove field and provide a
database for identifying geologic controls on
coal occurrence. These logs record bed thickness
with a minimum resolution of 0.3 to 0.4 foot. A
series of cross sections (fig. 2) was made to deter-
mine sandstone- and coal-body relationships. in
the Black Creek and Pratt cycles, which contain
numerous beds with complex geometry,
maximum coal thickness maps were made; these
maps depict the thickest coal bed in a given
interval regardless of stratigraphic position with-
in that interval. Because individual beds in the
Mary Lee cycle extend throughout Oak Grove
field, isopach maps of each coal bed were made.
Additionally, isopach and net-sandstone isolith
maps of selected siliciclastic intervals separating
regionally extensive coal beds were made to
demonstrate the depositional architecture of
the coal groups. Only lithic sandstone is present
in the Black Creek-Cobb interval of Oak Grove
field.

FLUVIAL CONTROL
LOWER BLACK CREEK SUBCYCLE

Density logs demonstrate that the lower
Black Creek subcycle contains a thinning-upward
sequence containing five to eight coal beds (fig.
5). Nearly all beds thicker than 1 foot are in the
lower half of the coal-bearing part of the sub-
cycle, and the thickest bed occurs at or near the
bottom of the coal group. Net-coal thickness in
the lower Black Creek typically varies from 4 to
10 feet (fig. 51), and maximum bed thickness
varies from 1 to 5 feet (fig. 52). As a rule, net coal
thickness increases with maximum bed thick-
ness, although the highest values on each map
are slightly offset in most areas, reflecting
joining of coal beds at different stratigraphic
levels.

The lower Black Creek contains two major
sets of coal beds (fig. 53). Bed geometry in the
lower set is variable, whereas beds in the upper
set are more continuous and contain splits with
less relief. Although the lower Black Creek typ-
ically contains these two sets of coal beds, they
do not form regionally significant marker units.
Rather, stratigraphic variability of the lower
Black Creek simply decreases upward, and if
traced far enough, beds in the upper set pass
into the lower set.

Most beds in the lower set merge into one of
the thickest beds in Oak Grove field (fig. 53).
Stacked sandstone bodies separate coal beds at
the north end of the cross section, and the asso-
ciated siliciclastic intervals fine and thin south-
ward as the coal beds merge. In the southern
part of the cross section, however, another series
of stacked sandstone bodies occurs above the
thickest coal.

Features in the lower Black Creek subcycle fit
well into the classic compactional model of Ferm
and Cavaroc (1968) in which differential com-
paction of peat and siliciclastic sediment pro-
vides avulsion sites for channel axes, thereby
juxtaposing thick sandstone and coal bodies.
Where the coal beds merge (fig. 53), a large
volume of compactible peat had accumulated.
Compaction of that peat apparently promoted
establishment of a new fluvial trend that is rep-
resented by the three stacked sandstone bodies
in the southern part of the cross section.
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Figure 53.--Stratigraphic cross section A-A’, Oak Grove field. See figure 51 for location.

Stacking of sandstone bodies between coal
beds in the northern part of the cross section
suggests that the peat was domed above river-
bank level, thus causing avulsion and estab-
lishment of fluvial axes beyond the line of cross
section. Only after fluvial deposits built above
the level of the peat accumulation could the
river avulse toward the south, thereby forming
stacked sandstone bodies above the thickest
coal. Upward decrease in stratigraphic variability
within the lower Black Creek subcycle suggests
that topography had become subdued and that
development of avulsion sites by peat com-
paction was not a dominant process near the
close of lower Black Creek deposition.

UPPER BLACK CREEK SUBCYCLE

The upper Black Creek subcycle contains one
to six (generally two or three) thin coal beds that

cap a coarsening-upward sequence that is
approximately 100 feet thick (figs. 5, 53). Core
data (Boyer and others, 1986) indicate that
marine mudstone is present below the upper
Black Creek coal beds, suggesting a deltaic
origin for the lower part of the subcycle, but are
absent within the coal-bearing interval, suggest-
ing an alluvial origin for the upper part of the
subcycle. Individual beds in the upper Black
Creek are thinner than 1 foot throughout most
of Oak Grove field and may thus have limited
significance as completion targets. However,
maximum coal thickness exceeds 1.5 feet in
south-central Oak Grove field and 3 feet in the
easternmost part of the field (fig. 54). Net coal
thickness varies from less than 0.5 foot in the
west-central part of the field to more than 4 feet
in the easternmost part (fig. 55).

The sandstone-isolith map of the upper
Black Creek depicts a major east-west-trending
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sandstone body (fig. 56). The 30-foot contour on
the sandstone isolith map outlines an east-west
trending, sinuous sandstone body that is locally
2 miles wide and more than 50 feet thick; the
main sandstone body narrows and joins another
sinuous body in the westernmost part of the
field. Localized lobate and apron-like bodies,
like the one defined by the 40-foot contour in
waest-central Oak Grove, are present along the
flanks of the main axial trend. Sandstone and
coal thickness have a strong inverse relationship
in the upper Black Creek of western Oak Grove
field (figs. 53, 55, 56). As many as six beds occur
in the south, whereas only two beds occur in the
north where correlative sandstone is thickest.

The axial sandstone trend (fig. 56) is inter-
preted to be a sinuous fluvial channel, and the
flanking lobate and apron-like bodies are inter-
preted to be crevasse-splay complexes. Joining
of the two sinuous sandstone bodies in western-
most Oak Grove may define part of a tributary
system. The upper Black Creek fluvial system is
similar in scale to that of the Tombigbee and
Alabama Rivers of southwest Alabama which
have meander belts that are approximately 2
miles wide north of where they join to form the
Mobile River.

The inverse relationship between sandstone
thickness and coal thickness and abundance
(figs. 53, 55, 56) indicates strong fluvial control
on coal occurrence. increase in coal thickness
away from the fluvial axis suggests that the
fluvial system controlled where peat could
accumulate. The uniform increase in coal abund-
ance away from the fluvial axis plus the lateral
continuity of the siliciclastic intervals separating
the coal beds suggests that the flood basins were
extensive and that peat (coal) accumulated only
in flood basins isolated from clastic influx.

STRUCTURAL CONTROL
MARY LEE CYCLE

The Jagger coal bed is as thick as 3 feet and is
generally 1.5 to 2 feet thick in Oak Grove field
(fig. 57). The bed terminates sharply at the
master fault of a horst-and-graben system in
central Oak Grove; that fault evidently exerted
strong control on coal distribution from Mary
Lee to Cobb deposition (fig. 58). The Jagger is
absent on much of upthrown fault block; which
includes the Oak Grove mine, and in most of

western Oak Grove field. However, the bed does
occur east of the mine and along the axial trace
of the Sequatchie anticline north of the mine.

The Jagger-Blue Creek siliciclastic interval,
where present, is typically between 20 and 30
feet thick and has fairly uniform thickness (fig.
59); however, the interval pinches out sharply.
The interval is absent in the upthrown fault
block in eastern Oak Grove field but thickens
gradually in the easternmost part of the map
area. The interval is approximately 20 feet thick
along the axial trace of the Sequatchie anticline
in north-central Oak Grove. Sandstone in the
Jagger-Blue Creek interval occurs in a series of
linear to sinuous trends and is locally thicker
than 20 feet; one of those trends parallels the
master fault (fig. 60).

Unlike the Jagger bed, the Blue Creek bed
occurs throughout Oak Grove field (fig. 61) and
is the principal completion target. The Blue
Creek bed is generally 3 to 5 feet thick and is
thicker than 6 feet in the south-central part of
the field; the bed is only 3 feet thick along the
axial trace of the Sequatchie anticline. In central
Oak Grove field, coal thicker than 6 feet has a
dendritic plan geometry in the upthrown faulit
block; and in the Oak Grove mine, coal thicker
than 6 feet occurs in channels (fig. 15). The trunk
channel is locally deeper than 60 feet and trun-
cates the Jagger bed at the southern channel
margin and is at the level of the Jagger in the
northern part (fig. 62).

The Mary Lee coal bed occurs between 4 and
8 feet above the Blue Creek bed throughout Oak
Grove field (fig. 58, 62). The Mary Lee bed is
typically 1.5 to 2.5 feet thick in eastern Oak
Grove field and is only 1 foot thick in the west-
ern part of the field (fig. 63). Thickness trends in
the bed do not parallel the fault, but coal thicker
than 3 feet in central Oak Grove coincides with
thick Blue Creek channel-fill coal (figs. 61, 63).
Within the trunk channel, thickness of the Mary
Lee bed is variable and has a maximum value of
4.5 feet.

The Mary Lee-New Castle siliciclastic interval
is generally 30 to 60 feet thick (fig. 64). Only the
50-foot thickness contour parallels the fault
trend, and like the Mary Lee bed, the interval is
thickest in the area of Blue Creek channel-fill
coal (figs. 61, 64). The Mary Lee-New Castle
interval is thin along the axial trace of the Se-
quatchie anticline and is thinner than 10 feet in
northernmost Oak Grove field. Net-sandstone
thickness in the Mary Lee-New Castie interval
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Figure 58.--Stratigraphic cross section B-B’, Oak Grove field. See figure 57 for location.

locally exceeds 30 feet (fig. 65). Several linear
sandstone bodies in the eastern and central
parts of the field merge to form a sinuous sand-
stone belt that extends into the westernmost
part of the field. The sinuous sandstone belt is
approximately 2 miles wide in westernmost Oak
Grove and is characterized by lobate trends on
the outside parts of the curves.

The New Castle coal is the uppermost bed of
the Mary Lee cycle; the coal splits profusely, but
a major bed is traceable throughout most of the
field (figs. 58, 66). The New Castle is thin or ab-
sent in the area containing most of the channel-
fill coal bodies (figs. 61, 63, 66), and in core, the
seat earth of the New Castle is not rooted near
where it pinches out (Epsman and others, 1988).
The bed is continuous in western Oak Grove
field and is locally thicker than 4 feet; itis a more
significant coalbed-methane target than the
Blue Creek in much of this area.

Sedimentologic evidence indicates interplay
among structural, fluvial, and compactional pro-
cesses during Mary Lee cycle deposition. Occur-
rence of the channel network delineated by
thick Blue Creek coal on the upthrown fault
block (fig. 61) suggests that the network was a
tributary system. Sharp pinchout of the Jagger-
Blue Creek interval (fig. 59) indicates that the
tributaries occupied a steep-walled valley. Some
of the tributary channels skirt the axial trace of
the Sequatchie anticline, suggesting that an
ancestral structure was present; synsedimentary
activity of ancestral structures associated with
Appalachian folds has been reported by Thomas
(1974) and Neathery (1982). Peat is resistant to
erosion, so occurrence of the Blue Creek bed at
the level of the Jagger near the northern margin
of the main channel suggests that terraces
formed on peat beds exhumed during valley
incision. Joining of the Jagger and Blue Creek
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Figure 62.--Stratigraphic cross section C-C’, Oak Grove field. See figure 61 for location.

beds throughout much of Oak Grove field
signifies that the Jagger provided channel floors
in a large area. Termination of the Jagger coal
and the Jagger-Blue Creek siliciclastic interval at
a fault (figs. 57 through 59) indicates that the
coal and associated siliciclastic rocks were
eroded or never deposited on the upthrown
block and were preserved on the downthrown
block by differential subsidence and compac-
tion; presence of the lJagger coal and the
Jagger-Blue Creek siliciclastic interval east of the
mine (figs. 58, 59) suggests that the area
subsided more rapidly than the area immedi-
ately northeast of the major faults, thus defining
an uplift in the mine area. This uplift evidently
caused Mary Lee valley incision and may have
been associated with the Sequatchie anticline.
Comparing the pattern of sandstone bodies
of the Jagger-Blue Creek interval (fig. 60), which
may represent fluvial axes, with the Blue Creek

tributary system (fig. 61) demonstrates the
variety of erosional and depositional processes
that can be controlled by faulting. Following
erosion of the upthrown biock, the tributary
system apparently was abandoned, swamp en-
vironments were established, and the tributaries
filled with Blue Creek and Mary Lee peat, result-
ing in formation of some of the thickest and
highest quality coal in the Black Warrior basin.
Thick channel-fill coal can be used to esti-
mate peat-to-coal compaction ratio in ancient
sequences (Cobb and others, 1981). Assuming
the channel was completely filled with peat, the
difference in coal thickness in the channel from
that outside the channel may represent the
amount of peat that filled the channel. There-
fore, the ratio of channel depth to the differ-
ence in coal thickness yields the peat-to-coal
compaction ratio. In cross section C-C’, the Blue
Creek coal in the channel is as thick as 9 feet,
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whereas adjacent to the channel it is approx-
imately 3 feet thick (fig. 62). Dividing the
channel depth (60 feet) by the difference in coal
thickness (6 feet) derives a compaction ratio of
10:1, which is the same value derived by Cobb
and others (1981) for Pennsylvanian channel-fill
coal in Kentucky.

Valley-fill peat accumulation apparently had
a strong impact on the remainder of Mary Lee
cycle sedimentation. The Mary Lee bed repre-
sents a fairly uniform peat blanket throughout
the map area, but thickening of the Mary Lee
bed and the overlying Mary Lee-New Castle
siliciclastic interval in the area of the tributary
system (figs. 61, 63, 64) indicates compactional
control of sedimentation. Extreme thickness
variation of the Mary Lee bed within the
tributary trend (fig. 63), however, indicates that
compaction did not proceed uniformly and that
parts of the paleovalley may have been under-
full or even overfull with Blue Creek peat. The
compaction ratio derived above uses the thickest
coal in the channel system and is thus a max-
imum value.

Contours on the Mary Lee and Mary Lee-
New Castle isopach maps (figs. 63, 64) do not
parallel the fault trend as clearly as those on the
previous maps, suggesting that fault-related
topography had been subdued, probably
because sedimentation rate exceeded subsid-
ence rate. However, sandstone-isolith patterns
in the Mary Lee-New Castle interval (fig. 65) sug-
gest that the regional gradient remained
essentially unchanged. Merging linear sand-
stone bodies in eastern Oak Grove may repre-
sent a fluvial tributary system. Those tributaries
join the sinuous axial sandstone body in western
Oak Grove which may represent a low-gradient,
meandering fluvial system similar in scale to that
in the upper Black Creek subcycle. The lobate
forms protruding from the sinuous sandstone
bodies suggest crevasse-splay systems in mean-
dering fluvial systems, because they are outside
of each curve (Allen, 1965; Schumm, 1977).

Splitting and local thickening of the New
Castle coal in the westernmost tributaries: (figs.
62, 66) indicates continued compactional control
of sedimentation, but pinchout of the coal in the
eastern part of the tributary trend (fig. 66) and
thickening in western Oak Grove field indicates
that controls on coal occurrence had changed.

Sedimentologic relationships suggest that
the New Castle pinches out because the compac-
tional subsidence rate in the tributary system

exceeded the sedimentation rate, resulting in a
lake instead of swamps. Unrooted coal near the
pinchout of the New Castle may represent log or
peat flotants at the lake margin.

GILLESPY/CURRY CYCLE

The Gillespy and Curry beds (fig. 5) are the
two most reliable stratigraphic markers in the
upper Pottsville because they are widespread,
closely spaced, and scarcely split (figs. 25
through 30, 58). Even where coal is absent, the
stratigraphic position of the beds is easily recog-
nized by the presence of coarsening-upward
sequences below the stratigraphic position of
the coal. However, additional beds occur in the
cycle below the level of the Gillespy bed,
particularly in the westernmost and easternmost
parts of the map area, and eastern Oak Grove
field is the only area of the Black Warrior basin
where the Gillespy and Curry beds split abun-
dantly (fig. 67).

Throughout much of Oak Grove field, the
Gillespy and Curry beds are very thin and are at
the lowest limit of log resolution. Therefore, net
coal thickness is equal to the number of beds
times 0.4 foot. The Gillespy and Curry beds have
a combined thickness of 1 foot or less in much of
western Oak Grove field (fig. 68) and may thus
have limited coalbed-methane production po-
tential. in the eastern part of the field, however,
numerous beds occur in the cycle (fig. 67) and
net coal thickness locally exceeds 4 feet. The
Gillespy-Curry siliciclastic interval thickens from
less than 30 feet in northern Oak Grove field to
more than 70 feet in the southwestern part of
the field (fig. 69). In central Oak Grove field, the
interval thickens from less than 40 feet to more
than 50 feet across the fault trace. Net-
sandstone thickness in the Gillespy-Curry
interval is greater than 30 feet in an east-west
belt that is approximately 3 miles wide;
sandstone is absent in much of northern Oak
Grove field (fig. 70). In the western part of the
field, lobate and elongate sandstone bodies
outlined by the 10-foot contour extend north
from the sandstone belt. In central Oak Grove,
sandstone occurs mainly in the downthrown
fault block.

Thickening of the Gillespy-Curry siliciclastic
interval in a bifurcated trend in western Oak
Grove (fig. 69) may represent filling of an
abandoned channel system below the Gillespy
coal. However, the channel was not filled with
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peat as was the case in the Blue Creek bed,
because the Gillespy coal does not thicken sig-
nificantly. Controls on coal-body geometry in
the Gillespy/Curry cycle in eastern Oak Grove
field will be discussed in the following section on
the Pratt and Cobb cycles.

The major sandstone beit (fig. 70) may repre-
sent a fluvial complex, and the flanking lobate
and elongate sandstone bodies may represent
crevasse-splay systems. The fluvial system may
have been the largest in the map area during
Black Creek-Cobb deposition, because the sand-
stone belt is approximately 3 miles wide. Al-
though the fault did not greatly affect thickness
of the Gillespy-Curry siliciclastic interval (figs. 69,
58), restriction of thick sandstone to the down-
thrown fault block (fig. 70) indicates that the
fault scarp had enough relief to control the
position of the fluvial system.

PRATT AND COBB CYCLES

The Pratt cycle contains four to eight coal
beds throughout most of Oak Grove field; only
the Black Creek cycle contains more coal beds
than the Pratt. Pratt cycle coal beds split pro-
fusely and are discontinuous, and coal-body
geometry changes abruptly at the synsedi-
mentary fault (figs. 58, 67). Contrary to earlier
reports (Weisenfluh and Ferm, 1984; Epsman
and others, 1988; Pashin and others, 1990), coal
beds are thickest and least abundant in the
downthrown block.

Net coal thickness in the Pratt cycle of Oak
Grove field varies from 3 feet in the northern
part of the field to 22 feet in the eastern part
(fig. 71). Similarly, maximum coal thickness
varies from less than 1.5 feet in the northern
part of the field to approximately 9 feet in the
eastern part (fig. 72). Net coal thickness increases
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from 7 to 9 feet across the master fault, and
maximum bed thickness increases sharply from 2
to 5 feet in the downthrown block (figs. 58, 71,
72). A belt of coal with net thickness greater
than 9 feet parallels the fault trend and extends
into northwest Oak Grove field; local patches of
thick coal occur southwest of this belt. In con-
trast, maximum coal thickness exceeds 4 feet in a
rectangular area southwest of the fault,
reflecting joined beds.

The Cobb cycle generally contains three or
fewer coal beds in Oak Grove field (fig. 58), and
only one of these beds is typically thicker than
0.4 foot. Net coal thickness ranges from less than
1.5 feet to more than 5 feet (fig. 73). More coal
beds occur in the downthrown block than in the
upthrown block, but splitting is not coincident
with the fault (fig. 58). Even so, net coal thick-
ness doubles from less than 1.5 feet in the up-
thrown block to more than 3 feet in the down-
thrown block (fig. 73).

Inability to trace coal beds in the Pratt cycle
for a large distance suggests that the fluvial sys-
tems that formed the siliciclastic intervals
avulsed more frequently and were perhaps
narrower than those in other cycles. For exam-
ple, fluvial systems in the Mary Lee cycle formed
siliciclastic intervals that are mappable through-
out Oak Grove field (figs. 59, 60, 64, 65), whereas
no regionally mappable siliciclastic intervals
were identified in the Pratt (fig. 58). However,
data from the Rock Creek site demonstrate that
Pratt siliciclastic intervals are mappable locally
and may be used to solve structural problems
(fig. 16).

In the Pratt and Cobb cycles, increase in coal
thickness in the downthrown fault block (figs.
58, 71 through 73) suggests that differential
subsidence favored peat accumulation and sub-
sequent formation of desirable coalbed-meth-
ane completion targets, but the fluvial response
to subsidence differed greatly in each cycle. In
the Cobb cycle, splitting of beds in the down-
thrown block indicates that differential subsid-
ence favored clastic influx; fault-related topo-
graphy may have been subdued thereby facili-
tating distal flood-basin sedimentation on the
upthrown block, because bed splitting does not
coincide precisely with the fault trace. In the
Pratt cycle, however, merging of coal beds sug-
gests that the fault sheltered the downthrown
block from clastic influx.

Splitting of beds in the Gillespy/Curry and
Pratt cycles in easternmost Oak Grove field (fig.

81

67) indicates that increased subsidence rate
acted in concert with alternating episodes of
clastic influx and peat accumulation (figs. 68,
71). The western margins of the thick coal bodies
in this area do not coincide with known faults,
so subsidence may have been expressed by
gentle downwarping. In addition to splitting
and thickening of coal in the Gillespy/Curry,
Pratt, and Cobb cycles, occurrence of thick coal
in the Black Creek cycle (figs. 51, 52, 54, 55) and
southeastward thickening of the Jagger-Blue
Creek siliciclastic interval of the Mary Lee cycle
(fig. 59) indicate that downwarping was oper-
ative in this area throughout Black Creek-Cobb
deposition.

STYLES OF COAL OCCURRENCE IN
OAK GROVE FIELD

Subsurface analysis of coal occurrence in Oak
Grove field demonstrates that interaction of
fluvial and structural processes resulted in varied
styles of coal occurrence that must be under-
stood to formulate effective exploration and
production strategies (fig. 74). Fluvial processes
apparently were the major controls on coal
occurrence in the Black Creek cycle. In the lower
part of the cycle, stacking of thick sandstone
sequences above the thickest coal beds suggests
that differential compaction provided sites for
channel avulsion. In the upper part of the cycle,
an inverse relationship between sandstone and
coal thickness also indicates fluvial control of
coal occurrence.

Above the Black Creek, structural and fluvial
processes apparently acted in concert to deter-
mine patterns of coal occurrence (fig. 74). In the
Mary Lee and Cobb cycles, more coal beds occur
in the downthrown fault block than in the
upthrown block; in the Gillespy/Curry cycle,
sandstone is generally restricted to the down-
thrown block. Contrary to earlier models,
however, the thickest coal in the Pratt and Cobb
cycles occurs in the downthrown block. The Pratt
cycle also contains the fewest coal beds in the
downthrown block. Only in the Mary Lee cycle,
where thick coal occurs in an abandoned tribu-
tary system, is coal thickest on the upthrown
block. In the eastern part of the field, gentle
downwarping evidently promoted splitting and
preservation of some of the thickest coal beds in
the Black Creek-Cobb interval.
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FAULTING

EXPLANATION

MARY LEE VALLEY-FILL COAL
6-9 FEET THICK

MAXIMUM PRATT COAL

e > 4 FT THICK

NET COBB COAL > 3 FEET THICK

85

_________

3 Miles

Figure 74.--Relationship of coal occurrence to structure, Oak Grove field.

Most coal beds in Oak Grove field apparently
are thickest in the downthrown fault block and
in the area of downwarping because differential
subsidence promoted peat accumulation. In
most cycles, clastic influx evidently favored bed
splits in the downthrown block, but joining of
beds in the Pratt cycle may reflect sheltering by
the fault. In contrast, channel incision prior to
formation of the Blue Creek coal provided relief
sufficient for thick peat to accumulate in lows on
the upthrown block, and compaction of thick
peat within the channel system had a marked
effect on sedimentation for the remainder of
Mary Lee cycle deposition.

Structural control of coal occurrence in Oak
Grove field (fig. 74) may provide a record of
detachment below the Coalburg syncline. The
synsedimentary fauit is interpreted to be an
early transcurrent pull-apart structure, whereas
control of channel pattern and coal-body
geometry in the Mary Lee cycle of north-central
Oak Grove field is interpreted to have been
caused by uplift of an ancestral structure related
to the Sequatchie anticline. This ancestral struc-
ture apparently evolved during Black Creek-
Cobb deposition, because the area of thin or

eroded coal in the Mary Lee, Pratt, and Cobb
cycles northeast of the synsedimentary fault is
variable in shape. Evidence for downwarping in
the eastern part of the field, moreover, is
suggestive of an early folding episode associated
with the modern-day Coalburg syncline. Al-
though styles of coal occurrence in Oak Grove
field are varied and apparently reflect a complex
sedimentologic and tectonic history, models of
coal occurrence in this area have resulted in a
predictive framework that may aid in resource
assessment, strategic well siting, and selecting
completion targets.

COAL QUALITY AND GAS
ANALYSIS: ORIGIN OF COALBED
METHANE

Following sedimentation, peat is buried,
heated, and coalified, and gas is generated. The

objectives of this section are to characterize coal

rank, coal grade, and gas composition in order
to evaluate the thermal history and origin of
coalbed gas in the Black Warrior basin of Ala-
bama. Coal-quality parameters are important in
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coalbed methane exploration and production,
because little methane is generated thermally
before coal reaches bituminous rank (Jlintgen
and Klein, 1975). Ideally, ash content and gas
content in coal are inversely related (Wyman,
1984), and high-ash coal commonly has a poorly
developed cleat system (Macrae and Lawson,
1954). Compositional data are useful for deter-
mining the source of gas, because different
kerogen types generate different types of
hydrocarbons (Rightmire, 1984). For example,
sapropelic kerogen, which is abundant in oil
shale, can generate heavy hydrocarbons, where-
as humic kerogen, which is abundant in coal,
generates mainly methane.

Results of coal-quality analysis demonstrate
that coal in the Black Warrior basin ranges in
rank from high-volatile C bituminous to low-
volatile bituminous. Comparison of rank and
structural data suggests that regional burial
coalification was overprinted by hydrothermal
coalification in Oak Grove and Brookwood
fields, thereby forming the highest rank coal in
the basin. Grade parameters indicate that ash
and sulfur content tend to be lowest in the
easternmost part of the Pottsville outcrop area,
apparently owing to protection from marine
water. Gas-analysis data suggest that coal is the
principal source of coalbed methane in the
Pottsville and that the gas may have locally
undergone thermal cracking and bacterial alter-
ation. Some coalbed-methane evidently con-
tains comingled biogenic and thermogenic gas,
and some gas may have migrated into coal from
deep sources

METHODS

Maps of volatile-matter content (dry, min-
eral-matter-free) and vitrinite reflectance
{mean-maximum) were made for the Mary Lee
coal group to evaluate coal rank. Where volatile-
matter data were available for more than one
bed in the coal group, the average value was
plotted. Maps of volatile-matter and Btu con-
tent for each coal group of the Black Creek-Cobb
interval are in Pashin and others (1990). Mean-
maximum vitrinite reflectance was measured
using standard procedures (Stach and others,
1982; ASTM standard D2798-85). Vitrinite-
reflectance measurements were made from
channel and column samples from outcrops and
mines and coal cuttings from oil and gas wells.

Additional measurements were compiled from
various sources (Hildick, 1982; Robertson Re-
search, Inc., 1985; Geochem Laboratories, 1986;
Hines, 1988; Levine and others, 1989).

To map grade parameters, specifically ash
and sulfur content, data from selected coal beds
in the Black Creek, Mary Lee, Pratt, and Cobb
coal groups were used. On the basis of bed
names employed by McCalley (1900), data were
collected from the Black Creek, Jefferson, and
Murphy beds of the Black Creek group; the Blue
Creek and Mary Lee beds of the Mary Lee group;
the Pratt, American, and Nickel Plate beds of the
Pratt group; and the Cobb bed of the Cobb
group. Ash content was mapped on a dry basis,
whereas sulfur content was mapped on a dry,
ash-free basis.

Coal analyses used to map rank and grade
parameters were obtained from the files of the
Geological Survey of Alabama and from the
National Coal Resource Data System (NCRDS) of
the U.S. Geological Survey. Published analyses
(Fieldner and others, 1925; Shotts, 1956, 1960;
Fanning and Moore, 1989) also were used where
data are scarce. Maps showing the locations of
analyses used in this study are included in Pashin
and others (1990). The analyses span a long
range of time and come from several sources, so
the methodology used, especially the cleaning
method, varied. Consequently, the results of
analysis, particularly ash and sulfur determin-
ation, also varied. For this reason, the grade
maps made for this report show only gener-
alized regional relationships.

To identify sources of gas in the Black
Warrior basin, samples for compositional gas
analysis were collected from Mississippian sand-
stone reservoirs and Pottsville coalbed reservoirs.
The samples were collected at the well head and
were analyzed by Dudley D. Rice at the U.S. Geo-
logical Survey. Analytical results were tabulated,
and a compositional plot was made to separate
gas populations with sapropelic and humic
sources.

RESULTS

COAL RANK

Coal rank of the study interval ranges from
high-volatile C bituminous to low-volatile bitu-
minous (figs. 75 through 79; table 1). Rank
decreases upward in section such that coal
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Figure 75.--Volatile-matter content, Black Creek coal group, Black Warrior basin, Alabama.

groups below the Cobb have a maximum rank of
low-volatile bituminous, whereas the Cobb and
higher coal groups have a maximum rank of only
medium-volatile bituminous. The highest rank
coal in the Black Warrior basin occurs in a
"bullseye" pattern along the Tuscaloosa County-
Jefferson County border. The bullseye is in the
Coalburg syncline immediately northwest of the
Blue Creek anticline. In the heart of the bullseye,
volatile-matter content is as low as 19 percent,
and vitrinite reflectance is locally higher than 1.4
percent in the Mary Lee coal group (fig. 79).
Volatile-matter content increases by approx-
imately 6 percent toward the southeast across
the northwest limb of the Blue Creek anticline
(figs. 75 through 78), and the structural cross sec-
tion of the southeast basin margin indicates that
isorank lines are subhorizontal and oblique to
bedding in the anticlinal limb (fig. 9).

The 34-percent volatile-matter contour on
the Mary Lee map defines a northwest extension
of the bullseye, and the northeast and south-
west boundaries of the high-rank anomaly can
be defined by two straight lines that extend
from the southeast basin margin into Walker
County (fig. 76). Between those lines, volatile-

matter content is generally 3 to 8 percent lower
than in adjacent areas. The northeastern line ex-
tends from Jefferson County to Walker County
and is aligned with the southwest margin of the
Bessemer cross-strike structural discontinuity
(CSD) of Thomas and Bearce (1986) and may de-
fine an extension of that discontinuity into the
Black Warrior basin. However, the southwestern
line, which stretches from Tuscaloosa County to
Walker County, does not coincide with any
known structural feature.

The only available rank information for

-Pottsville coal below thick Cretaceous over-

burden is vitrinite reflectance (fig. 79). Most coal
in the Mary Lee coal group is of high-volatile A
bituminous rank. However, coal rank is as low as
high-volatile C bituminous in an area that ex-
tends from western Fayette County to northeast
Pickens County and is defined by the 0.6-percent
vitrinite-reflectance contour. A single vitrinite-
reflectance value indicates that medium-volatile
bituminous coal may occur in northern Sumter
County.
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Figure 77.--Volatile-matter content, Pratt coal group, Black Warrior basin, Alabama.
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COAL GRADE

Coal in the Black Creek group contains less
than 6 percent ash throughout most of Jefferson
and Tuscaloosa Counties and in much of the
northern part of the study area (fig. 80). Coal
with ash content higher than 6 percent occurs
throughout most of Fayette and Walker Count-
ies and locally in southeastern Marion and
southwestern Winston Counties. Sulfur content
in the Black Creek group is less than 2 percent
throughout much of Tuscaloosa County and in
the northern part of the study area (fig. 81). A
wide belt of coal with more than 3 percent sulfur
occurs throughout most of Walker County and
coincides largely with coal containing more than
6 percent ash (fig. 80).

Ash content is generally higher in the Mary
Lee group than in the Black Creek group but is
less than 12 percent throughout much of the
southern part of the study area (figs. 80, 82). In
the northern part, ash content is generally
between 12 and 18 percent, and coal beds with
more than 18 percent ash are most abundant in
northern Tuscaloosa County. Sulfur content in
the Mary Lee group is 1 percent or less through-

out most of the study area (fig. 83). Sulfur con-
tent greater than 2 percent occurs in a series of
isolated areas in a belt that extends from
northern Tuscaloosa to north-central Jefferson
County. Sulfur content in the Blue Creek and
Mary Lee beds tends to be the lowest of any coal
beds in the Black Warrior basin.

In the Pratt group, ash content is similar to
that in the Mary Lee group, but some areas
containing coal with less than 6 percent ash
occur in Jefferson and Tuscaloosa Counties (fig.
84). Coal with ash content ranging from 12
percent to more than 18 percent occurs in a belt
extending from northern Tuscaloosa to western
Jefferson Counties, and locally near the north-
ern outcrop in Fayette and Walker Counties.
Sulfur content is quite variable in the Pratt
group but is generally less than 2 percent in the
east-central part of the study area (fig. 85). In
the central and northwestern parts of the study
area, however, sulfur content is locally greater
than 4 percent.

The Cobb group contains less than 12
percent ash throughout much of the eastern
part of the map area (fig. 86). In the west,
however, ash content is quite variable and
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Table 1.--Abbreviated rank classification of bituminous coal

Btu/ib Percent volatile "Approximate
Rank (mmmf) matter percent vitrinite
{(dmmf) reflectance?
Low volatile 14-22 15-20
Medium volatile 22-31 1.0-1.7
High volatile A <14,000 >3 06-1.2
High volatile B 13,000 - 14,000 >31 05.08
High volatile C 11,000- 13,000 >31 04-0.7
1 From ASTM Standard D388-88.
2 From Damberger and others, 1984,
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Figure 80.--Ash content, Black Creek coal group, Black Warrior basin, Alabama.

locally exceeds 18 percent. Sulfur content in the
Cobb group is less than 2 percent in the east
where ash content is low (fig. 87). In contrast,
sulfur content locally exceeds 6 percent, which is
higher than in the other coal groups, in the
northwest where ash content is high.

In general, low-ash coal corresponds with
low-sulfur coal. In all coal groups, ash and sulfur
content tend to be lowest and least variable in
the eastern and southern parts of the Pottsville

outcrop area where coal is thickest and most
abundant and tend to be highest in a belt
extending from southern Fayette County and
northern Tuscaloosa County to eastern Jefferson
County. In the northern part of the outcrop
area, however, ash and sulfur content are
variable and unpredictable. The reason for the
correlation between ash and sulfur content is
unclear, but occurrence of high-grade coal in the
eastern and southern parts of the outcrop area
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may owe partly to development of broad
interfluvial swamps and isolation from marine
water.

GAS COMPOSITION

Methane in the Black Warrior basin of
Alabama may be divided into two groups on the
basis of isotopic variation (§13C,) and ethane (Cy)
content (fig. 88; table 2). Gas from Mississippian
conventional reservoirs, which are located in the
deep subsurface in the northwestern part of the
study area, is characterized by a narrow range of
isotopic variation and has a considerable ethane
component. The Mississippian gas samples have
613Cy values between -47 and -50 parts per
thousand (ppt), and ethane content ranges from
0.5to 3.5 percent.

In contrast, coalbed methane is character-
ized by a wide range of §!3C, values, and C;
values are less than 0.3 percent (fig. 88; table 2).
Whereas gas from Brookwood field has §13C,
values ranging between -41 and -46 ppt, gas
from Oak Grove and Deerlick Creek fields has
813Cy values ranging from -44 to -54 ppt. One
gas sample from Oak Grove field has an anomal-

ously high C; content and has a §13Cy value
similar to the Mississippian gas, and some sam-
ples from the other fields contain minor
amounts of C3 and C4 hydrocarbons.

NATURE AND TIMING OF
CATAGENESIS

Gas-analysis data indicate that Mississippian
gas and coalbed methane in the Black Warrior
basin of Alabama are derived from different
sources (fig. 88). The high C, content of the
Mississippian gas indicates a large contribution
of gas from sapropelic kerogen, and some
Mississippian gas is associated with oil; this con-
ventional gas was evidently derived from
Mississippian shale units (Rice and others, 1989).
However, the low C; content of some samples
may indicate a major contribution from humic
kerogen,aithough thermal cracking and bacter-
ial alteration may also contribute to dryness in
gas reservoirs (James and Burns, 1984).

Pottsville coal is the probable source of
coalbed methane in Alabama. The low C; con-
tent of coalbed methane (fig. 88; table 2)
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RESULTS OF METHANE ANALYSIS

4.5
44 SAPROPELIC
35] s SOURCE
3; O DEERLICK CREEK (coalbed methane)
~ 2.5 r [0 BROOKWOOD (coalbed methane)
24 /A OAK GROVE (coalbed methane)
1.5, © MISSISSIPPIAN (conventional gas)

54 52 -50 -48 -46 -44 -42 -40

Figure 88.--Scattergram showing variation of gas composition, Black Warrior basin, Alabama.

Table 2.--Gas composition in the Black Warrior Basin!

— .

rmber | Location (w0 o0 o 0 (o o)
10470 Deerlick Creek -45.45 95.86 0.06 0.02 0.08 --
10472 -44.55 96.91 .02 -- .- -
10473 -47.33 99.95 .01 - - -
10474 -49.21 95.62 .01 ‘ . - --
10477 -47.82 99 89 01 10 13 -
10478 -47.42 99.30 33 .22 - -
10479 Mississippian -47.10 98.51 93 .31 02 0.01
10480 -47.19 96.64 3.03 25 .02 -
10481 -49.77 97.34 2.28 .29 .02 01
10482 -49.25 98.40 1.37 16 .01 .01
10486 -49.21 94.61 4.21 78 .08 .08
10487 -49.17 90.14 4.01 74 07 .08
10488 Brookwood -45.15 89,75 .02 - .. -
10489 -44.67 99.72 10 - - .
10490 -42.20 99.83 .08 .09 - -
10491 -41.86 99.92 .08 - - .
10492 -49.77 99.94 - - - -
10493 -51.02 95.03 .- - - -
10494 - Oak Grove -47.60 95.99 3.78 - . -
10495 -47.79 99.94 .01 . .- -
10496 -49.26 99.93 .01 - - .-
10497 -46.60 99,93 - - . .-
10498 -49.22 95.05 - . . .

' Data courtesy of Dudley D. Rice, U.S. Geological Survey.



suggests a humic source, aithough again, ther-
mal cracking and bacterial alteration may have
affected gas composition. Rank data indicate
that nearly all coalbed-methane production up
to December 1988 is from coal mature enough
to have generated methane thermally. However,
biogenic methane has §13C; values between -90
and -40 ppt (Jenden, 1985), so some of the iso-
topically lightest gas in the Black Warrior basin
may represent comingled biogenic and thermo-
genic methane. The high C, content of one
sample from Oak Grove field plus minor
amounts of longer chain hydrocarbons in the
other fields suggests that hydrogen-rich com-
ponents in coal, such as sporinite, generated wet
gas. Locally high C; content also raises the possi-
bility that hydrocarbons have migrated into
some coalbed reservoirs from deeper sources.

On a basin-wide scale, coal rank is poorly
related to regional structural trends. However,
decrease in rank from the high-rank anomaly to
the northwest limb of the Blue Creek anticline
can be related directly to structure. Coalification
of the highest rank coal in western Jefferson and
eastern Tuscaloosa Counties (fig. 79) postdated
or occurred during the late stages of folding be-
cause isorank lines are subhorizontal and cross-
cut bedding on the anticline (fig. 9).

Structural relief equivalent to the northwest
limb of the Blue Creek anticline would be re-
quired to explain the decrease in coal rank to the
northeast and southwest of the high-rank ano-
maly in terms of burial depth. Because no such
structure exists (fig. 8), this anomaly may have
been formed by a local increase in the paleo-
geothermal gradient. The origin of the high-
rank coal remains enigmatic, but one explan-
ation for elevated thermal maturity is hydro-
thermal activity adjacent to the Blue Creek anti-
cline in fractured strata between two northwest-
trending structural discontinuities.

Although a southwestward increase in burial
depth may explain high rank in Sumter County
(fig. 79), thrust faulting (fig. 7) and scarcity of
wells make interpretation difficult. Develop-
ment of the high-rank anomaly of Jefferson,
Tuscaloosa, and Walker Counties apparently
occurred during or after Alleghanian thrusting,
because the Blue Creek anticline was already
present. Lignitic plant debris have been reported
from the Late Cretaceous Tuscaloosa Group
which rests unconformably on the bituminous-
coal-bearing Pottsville Formation (Stephenson,
1926). This rank discontinuity indicates that the
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Pottsville was
deposition.

STRUCTURAL CONTROL AND
MODERN DISTURBANCE
OF THE HYDROLOGIC SYSTEM

coalified before Tuscaloosa

Tectonic, sedimentologic, and thermal pro-
cesses all acted together to form the present-day
configuration of the Black Warrior basin, and
hence, provided the hydrogeologic frame work
of the Pottsville Formation. Water must be re-
moved from coalbed-methane reservoirs to
reduce fluid pressure, thereby facilitating de-
sorption of methane from coal. Thus, hydrology
is important in coalbed methane exploration
and production because of water disposal and
related economic and environmental concerns
(O’Neil and others, 1989). The principal objective
of hydrologic analysis was to identify hydrologic
controls on the occurrence and producibility of
coalbed methane. Water-level, water-produc-
tion, reservoir-pressure, and water-chemistry
data were analyzed with respect to the struc-
tural and sedimentologic framework of the
Black Warrior basin in order to develop a pre-
dictive hydrologic model for the Pottsville
Formation.

Results of hydrologic analysis indicate that
structural geology is a primary control on the
hydrologic system and that mining and coalbed-
methane production have also impacted region-
al hydrology. Black Creek-Cobb strata have
minimal primary permeability, so coal beds are
the principal aquifers owing to closely spaced
cleat. Most other groundwater flow also is
through secondary conduits, such as joints and
faults. Water-level data indicate that reservoir
pressure has been lowered significantly by
underground mining and coalbed-methane pro-
duction. Hydrochemical data demonstrate that a
series of structurally controlled fresh-water
plumes minimizes water-disposal concerns along
the southeast basin margin, whereas recharge
transmitted by Cretaceous aquifers may increase
water-disposal concerns in the western part of

_the basin. Water production from the Black

Creek-Cobb interval is extremely variable, and
water-production data suggest that many
coalbed-methane reservoirs are structurally
compartmentalized.



98

METHODS

Water-level data from more than 1,000
water, petroleum, and coalbed-methane wells
were used to map the potentiometric surface in
the upper Pottsville Formation. Water level was
measured to the nearest 0.1 foot in coalbed-
methane wells in Jefferson and Tuscaloosa
Counties in 1987 and 1988 using a battery-
powered Powers Well Sounder. Reservoir pres-
sure was determined using available water-level
and construction information for coalbed-meth-
ane wells by multiplying the length of the water
column by 0.433 psi/ft. Pressure-depth plots for
Brookwood and Oak Grove fields were made to
determine the pressure regime of the coalbed-
methane fields. The pressure-depth quotient for
each well was plotted on a map to determine
the relationship between reservoir pressure,
geologic structures and underground mines in
the coalbed-methane fields.

Water samples were collected from 59
coalbed-methane wells and 13 water wells in
Jefferson and Tuscaloosa Counties in 1988, and
standard chemical analyses of the samples were
made in the Geochemical Laboratory of the
Geological Survey of Alabama using the proced-
ures described in Brown and others (1970),
Skougstad and others (1979), and the U.S. Envi-
ronmental Protection Agency (1979). Results of
chemical analysis were used to make scatter-
grams and Stiff diagrams (Stiff, 1951) to identify
relationships among water type, degree of
mineralization, and depth. Maps of TDS content
also were made to determine the distribution of
saline water and to characterize basin hydro-
dynamics.

To determine geologic controls on water
production, a map of peak water production
was made for Oak Grove field. Water-produc-
tion data through November 1989 were collect-
ed from the files of the State Oil and Gas Board
(Form OGB-7) and were plotted on a map
showing major folds and faults. Water-produc-
tion maps for all coalbed-methane fields in
Alabama are available in Pashin and others
(1990).

AQUIFER CHARACTERISTICS

Quartzose sandstone has sufficient primary
permeability to form conventional aquifers and
petroleum reservoirs in the Pottsville Formation

of Alabama (Epsman, 1987), but primary perme-
ability in lithic sandstone is generally on the
order of only 0.1 millidarcy (md) (Tucker and
Kidd, 1973). Therefore, secondary conduits, such
as faults, joints, and cleats, are the dominant
source of permeability in the coalbed-methane
fields.

Permeability in the Pottsville Formation de-
creases markedly with depth. Hydrologic test
data from Cedar Cove, Brookwood, and Oak
Grove fields indicates that permeability is
approximately 100 md at a depth of 100 feet and
is less than 10 md at a depth of more than 1,000
feet (McKee and others, 1986). Downward de-
crease of permeability may reflect scarcity of set
Il joints (see section on structural geology) plus
closure of fractures at depth in response to high
confining pressure.

Because cleat is closely spaced relative to
other fractures, coal is the most permeable rock
type in the Pottsville and thus has a strong effect
on aquifer behavior. For example, results from
the Rock Creek site (Boyer and others, 1986)
demonstrate that the cone of depression gener-
ated by wells completed in the Pratt cycle, where
the cleat system is well developed, is elongate in
the face-cleat direction. In contrast, the cone of
depression in the Blue Creek coal of the Mary
Lee cycle, which contains inclined and curving
fracture systems, has no preferred orientation.
Fractures adjacent to coal beds, such as joints,
also affect gas flow and permeability anisotropy.

The Pottsville may be modeled as an uncon-
fined aquifer, although low permeability at
depth may cause local confinement. For uncon-
fined aquifers, the terms potentiometric surface
and water table are synonymous. The poten-
tiometric surface is locally higher than 1,000 feet
above msl in the upland areas of Culiman
County and descends southwestward to less
than 200 feet above msl in central Tuscaloosa
County near the Cretaceous overlap (fig. 89). In
the Pottsville outcrop area, near-surface ground-
water flow is generally perpendicular to poten-
tiometric contours and toward major surface
drainage features like the Black Warrior River.
West of the Pottsville outcrop area, the
unconsolidated Cretaceous sand that overlies
the Pottsville is a major aquifer that intercepts
and transmits meteoric recharge.

Modern disturbance of the hydrologic sys-
tem is apparent in western Jefferson and eastern
Tuscaloosa Counties (Oak Grove and Brookwood
fields) where the water table has been lowered
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by as much as 200 feet by underground mine
dewatering (fig. 89). In this area, deep
underground mines have been operating less
than 25 years. Hence, lowering of the water
table may reflect rapid dewatering of fracture
systems with high permeability and limited
volume.

RESERVOIR PRESSURE

Reservoir-pressure data yielded important
results regarding the effects of coalbed-meth-
ane wells and underground mines on basin
hydrodynamics. In Oak Grove field, most data
plot along a line with a =lope of 0.432 psi/ft,
which essentially is hydrostatic pressure (fig. 90).
However, the regression coefficient of the line is
only 0.71, and many data wells completed in the
Blue Creek coal (approximately 1,175 feet) have
pressure far below hydrostatic. In all other coal-
bed-methane fields, such as Brookwood field,
pressure does not correlate significantly with
.depth, and pressure-depth quotients are well
below hydrostatic (0.433 psi/ft).

Water-level data used to calculate reservoir
pressure in Oak Grove field west of the Oak
Grove mine were collected shortly after the wells
began producing, whereas water-level data for
“all other studied wells were collected more than
3 months after wells began producing and thus
indicate pressure conditions after significant de-
watering. The Oak Grove results suggest that
near-hydrostatic conditions prevail in parts of
the Black Warrior basin where the natural
hydrologic system has not been significantly
altered. However, low reservoir pressure at the
level of the Blue Creek coal (fig. 90) is interpret-
ed to be a long-term effect of pumping in the
original Oak Grove degasification pattern where
wells have been completed in the Blue Creek
bed. Mining operations in the Blue Creek bed
may also contribute to low reservoir pressure.

Areas where reservoir pressure is low (<0.32
psi/ft) occur around the underground coal mines
in Oak Grove and Brookwood fields and also
occur in coalbed-methane fields that lack under-
ground coal mines (fig. 91). In most fields, low
reservoir pressure coincides with the distribution
of producing wells. In Deerlick Creek field, how-
ever, low reservoir pressure is restricted to the
southeastern part of the field. Apparently, coal-
bed-methane wells have reduced water level,
and hence reservoir pressure, throughout much

of the producing area. However, prolonged
pumping tests need to be performed to deter-
mine how effective depressurization has been,
because water-level data are more sensitive to
wellbore conditions than to ambient reservoir
conditions.

WATER CHEMISTRY

The hydrochemical system of the Black
Warrior basin is influenced by oxidation, car-
bonation, hydration, and ion exchange asso-
ciated with weathering of rock and soil. Graph-
ing total-dissolved-solids (TDS) content versus
depth establishes that salinity increases greatly
with depth and locally exceeds 30,000 milligrams
per liter (mg/L) (fig. 92). However, the degree
and type of mineralization vary greatly.

Stiff diagrams for the coalbed-methane
fields show vertical trends in the degree and
type of mineralization (fig. 93). Surface water
from unmined areas generally is not mineral-
ized, whereas that from mined areas is enriched
in magnesium and sulfate. in the shallow sub-
surface, water generally contains a low concen-
tration of sodium bicarbonate, but between
1,000 and 1,500 feet in Oak Grove and Pleasant
Grove fields, both sodium-bicarbonate and
sodium-chloride water types occur. In these
fields, sodium-bicarbonate concentration is less
than 20 equivalents per million (epm), and
sodium-chloride concentration is approximately
80 epm. Beyond 1,500 feet, sodium-chloride con-
centration increases sharply and exceeds 200
epm in Cedar Cove field.

A map depicting the elevation of very saline
water (>10,000 mg/L TDS) is based on geo-
physical log response and water-quality data
(fig. 94). Very saline water is higher than 500
feet below msl in part of Fayette and northern
Tuscaloosa Counties and is lower than 2,000 feet
below msl in an arcuate belt extending from
western Jefferson County to northwestern Tus-
caloosa County. Along the northwest flank of
the fractured Blue Creek anticline in western
Jefferson and eastern Tuscaloosa Counties, very
saline water is lower than 2,500 feet below msl.

Mapping TDS content in the Mary Lee coal
group demonstrates that fresh water (<3,000
mg/L TDS) extends farther northwest in the area
of the Blue Creek anticline than in adjacent
areas (fig. 95). The 3,000 mg/L contour defines a
series of northwest-trending fresh-water
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Figure 93.--Stiff diagrams showing general trends in water chemistry with depth.

plumes, and in Oak Grove field, TDS content is
lower than 1,000 mg/L in the largest of the
plumes. Several fresh-water plumes extend
northwest between faults, and although data
are scarce in the southwest, the plumes appear
to terminate abruptly at the eastern limit of the
Cretaceous cover. Northwest of the plumes,
water with TDS content greater than 10,000
mg/L occurs in some faulted areas. Detailed TDS
mapping of central Oak Grove field (fig. 96)
shows that a spur of water with less than 1,000
mg/L TDS occurs immediately northwest of the
Oak Grove mine and extends southwest from a
major plume. That fresh-water spur coincides
with a synclinal structure and terminates at a
fault.

Fresh-water plumes coincide with only a few
underground mines (fig. 95), so they apparently
reflect the natural flow system rather than the
effects of mine dewatering. However, mining
may have had an impact in Oak Grove field,
because the synclinal fresh-water spur may have
formed by downward percolation of fresh water

along a zone of enhanced permeability in res-
ponse to lowering of the water table. Northwest
extension of the plumes from the Blue Creek
anticline suggests that structure has played a
major role in recharge and development of head
along the southeast margin of the basin. This
hypothesis is supported by the abundance of
fractures on the anticline, which include fracture
cleavage in siliciclastic rocks and inclined frac-
tures in coal, and by the deep occurrence of
fresh water adjacent to the anticline. In the
interior of the basin, faults apparently act as
barriers to lateral flow and help define fresh-
water plumes. In. effect, faults  serve to
compartmentalize the Pottsville hydrologic
system.

Termination of the plumes at the limit of
thick Cretaceous overburden (fig. 95) may reflect
the increased depth of Pottsville target strata
and the ability of high-permeability Cretaceous
strata to intercept and transmit most of the
available recharge. Data from below Cretaceous
cover are few, and local hydraulic commun-
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Figure 94.--Elevation of very saline water (> 10,000 mg/L TDS), Black Warrior basin, Alabama.

ication between Cretaceous aquifers and the

Pottsville Formation may reduce water salinity.
However, potential for high TDS water exists in
the Pottsville where Pottsville and Cretaceous
aquifers are not interconnected.

WATER PRODUCTION

Water production is extremely variable in
the Pottsville Formation of Alabama. Water
wells are typically completed in the weathered,
near-surface part of the Pottsville at an average
depth of 150 feet; production ranges from 17 to
7,650 barrels per day (bpd) on the basis of a 72-
well data set (Epsman and others, 1988). In
contrast, coalbed-methane wells are completed
in unweathered rock at a depth exceeding 1,000
feet; coalbed-methane wells produce 17 to
1,175 bpd on the basis of a 420-well data set
(Pashin and others, 1990).

According to data submitted to the State Oil
and Gas Board, initial and peak water pro-
duction coincide mainly because of a decline in
water production throughout the life of a coal-
bed-methane well (fig. 97). Throughout the

Black Warrior basin, peak water production
averages only 103 bpd in coalbed-methane wells
(Pashin and others, 1990). Peak water pro-
duction generally ranges from 50 to 1,000 bpd in
Oak Grove field, and a map of peak water pro-
duction shows a distinct relationship between
production and geologic structures (fig. 98).

In- the horst-and-graben system of south-
central Oak Grove field, peak water-production
contours trend northwest and parallel- normal
faults (fig. 98). Where faults are closely spaced,
water production is only about 50 bpd. Where
faults are approximately 1 mile apart, in con-
trast, water production is as high as 1,000 bpd.
Similarly, peak water production is higher than
300 bpd at many locations just outside the horst-
and-graben system. North of the horst-and-
graben system, water production increases to-
ward the northwest. Near the Oak Grove mine,
contours = are generally aligned northeast
approximately parallel to the axial trace of the
Sequatchie anticline and to set Il joints of joint
system A (figs. 17, 98). Farther northwest, how-
ever, water-production trends are poorly de-
fined and are difficult to relate to specific geo-
logic structures.
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Figure 97.--Production-decline curves, permit 3370, Oak Grove field.

The water-production map indicates that
the Pottsville Formation in south-central Oak
Grove field is compartmentalized by faults. In
this area, close fault spacing appears to impede
groundwater flow (fig. 98), suggesting that per-
meability is low and groundwater flow is limited
in the horst-and-graben system. Perhaps limited
groundwater flow owes to presence of clay-rich
gouge along the fault planes. North of the
horst-and-graben system, water-production
values increase northwest from the Oak Grove
mine, thus indicating depletion of groundwater
by underground mine dewatering.

HYDROLOGIC MODEL

Several factors evidently affect groundwater
flow in the Black Warrior basin (fig. 99).
Recharge to the hydrologic system is mainly by
rainfall, but streams may also contribute
(Harkins and others, 1980). In the weathered
strata above the water table, flow is evidently
dominated by downward percolation of meteor-
ic water through fractures, and vadose infiltra-
tion is an increasingly important process where
the water table has been lowered significantly
by mine dewatering and coal degasification.

Hydrochemical data indicate that intensely frac-
tured areas, such as the northwest flank of the
Blue Creek anticline, favor direct recharge into
the Pottsville Formation. However, permeable
Cretaceous cover strata probably intercept re-
charge in the western part of the study area.

Below the water table, high cleat density
may accommodate bedding-parallel flow in coal
and the development of fault-bounded fresh-
water protrusions (fig. 95). However, regional
disturbance of the hydrologic system by de-
watering lowers water level and reservoir
pressure, thereby providing considerable po-
tential for downward movement of ground-
water along zones of enhanced permeability
like that along the syncline in Oak Grove field
(figs. 96, 98). Therefore, dewatering of Pottsville
strata is rapidly changing the hydrologic regime
of the Black Warrior basin. Marked increase in
sodium and chlorine content and occurrence of
both sodium bicarbonate and sodium chloride
water in Oak Grove and Pleasant Grove fields
(fig. 93) suggest that a zone of mixing between
surface-derived water and deep formation
water exists between depths of 1,000 and 1,500
feet; this may be where water chemistry is most
variable.
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Permeability is probably greatest along fault
segments containing fractured sandstone and
may be minimal in fault segments with clay-rich
gouge and poorly developed synthetic and anti-
thetic joints. Therefore, hydrologic conditions
may vary considerably along a single fault plane.
Water-production and TDS data indicate that
faults and other fractures compartmentalize the
hydrologic system (figs. 98, 99). Areas with
closely spaced faults may most commonly be a
barrier to lateral flow; water production is low
and faults bound fresh-water protrusions.
Hence, high-TDS water may occur along some
faults because they have not been flushed by
meteoric .water. However, drill-stem-test data
from Jefferson County indicate strong potential
for upward flow from sub-Pottsville strata
(Pashin and others, 1990), so faults may provide
conduits for upward migration of deep basinal
water (fig. 99). Faults also extend deeper into
the subsurface and apparently have greater ver-
tical continuity than joints and thus make the
best conduits for vertical movement of such
water.

WELL PRODUCTIVITY: EFFECTS OF
WELL DESIGN AND GEOLOGY

Having established a geologic framework
for coalbed-methane target strata, controls on
gas production can be evaluated. The objectives
of this chapter are to identify the best short-
term measure of long-term productivity and to
determine how well design and geology affect
coalbed-methane production. The chapter be-
gins by deriving a short-term measure of pro-
ductivity. Next, that measure is tested
statistically against various engineering and
geologic factors. The chapter concludes by com-
paring production with known geologic fea-
tures to identify geologic controls on coalbed-
methane production.

Statistical analysis indicates that peak gas
production is the best available short-term
measure of well productivity but yielded limited
success in identifying the impact of well design
and geology on coalbed-methane production.
Results suggest that well-design factors, such as
completion, stimulation, and well spacing, are
not global controls on coalbed-methane produc-
tion despite changing engineering practice.
Geologic factors, such as net completed coal
thickness and well depth, also do not correlate

well with peak gas production. However, water
production correlates weakly but significantly
with peak gas production, reflecting the necess-
ity of removing water from coalbed reservoirs to
reduce reservoir pressure and desorb gas.

Production maps establish that wells with
exceptional coalbed-methane production, or
peak gas production higher than 200 Mcfd, are
localized and locally occur in northeast trends.
Detailed production and structure mapping indi-
cates that exceptional gas production occurs in
fractured reservoir compartments that can be
dewatered effectively, thereby lowering res-
ervoir pressure. Occurrence of minimal gas pro-
duction in many wells that produce a consid-
erable quantity of water suggests that high-per-
meability compartments are abundant in the
Black Warrior basin, but only those compart-
ments with limited recharge can be dewatered
and depressurized effectively.

METHODS

Production and completion data through
December 1988 were compiled from the files of
the State Oil and Gas Board of Alabama; only
vertical boreholes were evaluated in this study,
and the performance of gob and horizontal
boreholes was analyzed by Pashin and others
(1990). Production evaluation utilized initial-
production data for gas and water from Form
OGB-9, First Production or Retest Report. Initial
gas-production rate is generally based on a 24-
hour test performed early in the life of a well.
Peak gas-production rate was determined from
the Board's monthly production records for each
well, and the highest monthly volume of gas was
divided by the number of days in that month to
derive a daily rate. Average gas production was
computed by dividing cumulative gas produc-
tion by total production time in months; that
number was divided by 30 days to derive a daily
rate. Initial and peak water-production rates
were derived by using the same methodology as
used for gas. Completion type, such as open-
hole, perforated casing, or slotted casing, was
determined from Form OGB-7, Well Record and
Completion or Recompletion Report. Stimula-
tion type, such as water-sand and foam-sand-
water, was determined from Form OGB-6,
Report of Well Treatment.



PRODUCTIVITY

Three simple measures of coalbed-methane
production are available in the State Oil and Gas
Board’s records: (1) initial production rate, (2)
peak production rate, and (3) average produc-
tion rate. Average production rate is a long-term
measure of a well’s ability to produce, whereas
initial and peak rate occur within the first year of
production of wells drilled with an 80-acre or
smaller spacing. Linear regression indicates that
initial and peak rate correlate positively and sig-
nificantly with average rate, but the peak rate

correlates much more highly (fig. 100). Most.

coalbed-methane wells have been on line less
than 2 years, so peak rate may correlate highly
with average rate partly because it accounts for
a large part of total production. However, peak
rate is a more reliable value than initial rate
because it represents production throughout a
full month rather than results of a 24-hour test
which may be performed at different times.
Thus, peak production is the best available
short-term measure of long-term productivity.
Having defined a practical short-term meas-
ure of productivity, how much gas can a coal-
bed-methane well be expected to produce?
Cumulative relative-frequency values for peak
gas production indicate that 48 percent of the
wells analyzed had peak production lower than
100 Mcfd (fig. 101). Only 22 percent of the wells
produced more than 200 Mcfd, and only 5
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percent produced more than 400 Mcfd. Observ-
ing the frequency graph, the 200 Mcfd peak rate
is a logical dividing point between low- and
high-productivity wells. Therefore, using the 200
Mcfd value as a guide, the effects of completion
and geology were examined.

CONTROLS ON COALBED-
METHANE PRODUCTION

STATISTICAL ANALYSIS
WELL DESIGN

Aithough improved design may increase
production from individual wells, well design is
not a dominant determinant of coalbed-meth-
ane production (Pashin and others, 1990). Peak
production for wells on line through the end of
1988 does not correlate well with completion or
stimulation method (fig. 102), albeit only 5 per-
cent of the wells producing more than 200 Mcfd
were stimulated with foam, whereas 19 percent
of the wells producing less than 200 Mcfd were
stimulated by that method. Additionally, 9
percent of the wells producing more than 200
Mcfd were not stimulated, whereas only 3 per-
cent producing less than 200 Mcfd were not
stimulated. No significant correlation was found
between peak production and well spacing, al-
though spacing has increased through time from
25 to 80 acres.
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Figure 100.--Relationship of initial and peak gas production to average gas production
(n= number of measurements, r= correlation coefficient).
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Figure 101.--Cumulative relation-frequency diagram, peak gas production.

Plotting peak production rate against permit
numbers is one way to determine if production
has changed over time. Results indicate that,
despite production experience and changing
completion practice, no correlation exists be-
tween permit number and peak gas production
(fig. 103). Cross-linked gel and sand, however, is
now employed more than any other stimulation
method. Operators began using cross-linked gel
in 1988, so few of those wells are included in our
production analysis. Advantages of the cross-
linked gel and sand method are long fracture
length and full withdrawal of stimulation fluid.
Investigators at the Rock Creek site report in-
creased methane production in wells stimulated
with cross-linked gel (Steve Spafford, personal
communication, 1990).

Several factors may account for the poor
performance of wells completed with foam (fig.
102). Most foam wells are in the original Oak
Grove pattern, so low production may be attrib-
uted partly to unrefined engineering strategies.
However, wells in the Oak Grove pattern are the
most closely spaced coalbed-methane wells in
the Black Warrior basin (< 25 acres), so poor per-

formance may reflect competition among close-
ly spaced wells for a limited methane resource.

The surprisingly high performance of un-
stimulated wells in Brookwood field (fig. 102)
can be related to dewatering of a fracture sys-
tem in response to mine advance. The most
notable unstimulated well is the “glory hole,”
which is the only coalbed-methane well in Ala-
bama that has peaked higher than 1,000 Mcfd.
The "glory hole," like the other unstimulated
wells, was drilled west of the advancing face of
the Jim Walter Resources no. 4 Mine (fig. 1).
Production increased rapidly for a time and then
decreased as the mine face approached the well;
a similar response to mine advance has been
noted in Oak Grove field (Briscoe and others,
1988; Oyler, 1989). The mine face eventually
passed beyond the well, and investigators ob-
served that the well had penetrated open frac-
tures that are oriented N. 82° E. and are as much
as 0.5 inch wide.

GEOLOGY

As with well design, identifying correlations
between geologic factors and coalbed-methane
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production is difficult. Surprisingly, statistical
analysis indicates that net completed coal thick-
ness does not correlate significantly with coal-
bed-methane production (fig. 104). Although
coal thickness is not a dominant contro!l on pro-
duction, it is an important control on resource

distribution and reservoir architecture. There-
fore, coal occurrence is a critical production par-
ameter from the standpoint of locating a gas
resource that may be developed and for iden-
tifying specific completion targets.
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One necessary shortcoming of this study is
that geologic controls on gas content in coal
have not been identified, particularly with res-
pect to basin architecture and hydrology, be-
cause most gas-content data are proprietary. As
data become available, regional and tocal
mapping of gas content will be helpful in devel-
oping exploration and production strategies. Is
gas content similar to coal thickness in thatitis a
prerequisite for rather than a control on coal-
bed-methane production?

An optimal depth for coalbed-methane pro-
duction has been suggested to be 1,530 feet on
the basis of permeability-depth functions
(McKee and others, 1986). However, production
data demonstrate that well depth and peak
coalbed-methane production do not correlate
significantly (fig. 104). This lack of correlation
probably owes to a variety of geologic factors,
particularly vertical variations of gas content,
fracture architecture, and reservoir pressure.

Of the geologic parameters analyzed statist-
ically, only initial and peak water production
correlate significantly with peak gas production
(fig. 105). However, the weakness of that cor-
relation indicates that high water production,
and hence permeability, does not guarantee re-
duction of reservoir pressure sufficiently for a
large volume of methane to desorb. For this
reason, water production is a poor predictor of
well performance. Wells that produce a large
volume of water but little gas have probably
tapped hydrologic systems that are well inter-
connected and recharge rapidly. Comparing

Peak gas-production rate (Mcfd)

0 5 10 15 20 25 30 35
Net completed coal thickness (feet)

water-level and water-production data can
determine whether reservoir pressure is being
reduced sufficiently to promote methane
desorption.

MAP ANALYSIS

Although statistical analysis yielded only
limited success in identifying controls on coal-
bed-methane production, mapping production
and comparing it with known geologic features
produced conclusive results. A generalized map
of coalbed-methane production in the coalbed-
methane fields establishes that wells with ex-
ceptional coalbed-methane production, or peak
gas production higher than 200 Mcfd, are local-
ized (fig. 106). In several fields, such as Oak
Grove, Brookwood, Deerlick Creek, and Cedar
Cove, those wells are clustered together, and
many of those wells occur along northeast
trends.

Association between exceptional coalbed-
methane production and northeast-trending
topographic lineaments has been emphasized in
previous studies (Epsman and others, 1988;
Pashin and others, 1990). However, the coalbed-
methane fields contain myriad northeast linea-
ments, and only a few of those lineaments are
associated with highly productive wells. There-
fore, lineament studies may be of limited use in
strategic well siting, although advanced digital
analysis of remotely sensed imagery may prove
useful for identifying prospective lineament
trends.
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Figure 104.--Relationship of net completed coal thickness and total well depth
to peak gas production.
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Northeast trends of exceptional coalbed-
methane production are exemplified by the
trend adjacent to the Oak Grove mine in Oak
Grove field where wells drilled with a 40-acre
spacing facilitate detailed mapping (fig. 107). In
this area, peak production exceeds 300 Mcfd in a
linear, northeast trend that coincides with a
lineament that is visible on SLAR imagery. That
lineament corresponds with a syncline and a
fresh-water salinity anomaly (fig. 96) and is thus
a zone of high permeability. Field check of that
lineament revealed that beds dip as steeply as
18° near the synclinal axis.

A paramount concern in coalbed-methane
production is to reduce reservoir pressure suffi-
ciently so that an economic quantity of methane
may be desorbed from coal. For example, all
coalbed-methane wells in the Black Warrior
basin with peak production higher than 200
Mcfd occur where pressure-depth quotient is
less than 0.32 psi/ft (figs. 91, 106). Association of
the QOak Grove productive trend (fig. 107) with a
syncline and salinity anomaly indicates that the
trend occurs in a fractured reservoir compart-
ment that can be dewatered effectively, thereby
lowering reservoir pressure.

If exceptionally productive trends are
associated with northeast-trending fracture
compartments, why are the abundant north-
west-trending fracture systems, such as fault sys-
tems in south-central Oak Grove field, less
productive? Many faults contain clay-rich gouge

that may reduce permeability, and faults may

compartmentalize coal beds and thus limit the
areal extent of coalbed-methane reservoirs. The
modern east-northeast compressive stress field
(Engelder, 1982; Park and others, 1984) may
have also given rise to regional permeability
anisotropy by closing fractures oriented per-
pendicular to the compressive-stress vector
(north-northwest), like normal faults, and open-
ing fractures oriented paraliel to the stress
vector (east-northeast), like the regional face
cleat (cleat system A). '

Peak water production of more than 1,000
bpd in several parts of Oak Grove field indicates
that considerable permeability can exist where
little gas is produced (figs. 98, 106). Hence, some
strata with high permeability cannot effectively
be depressurized owing to rapid recharge.
Highly productive coalbed-methane wells in the
Black Warrior basin, like those in Oak Grove field
(fig. 107) apparently tap fractured reservoir com-
partments that have limited hydrologic commu-

nication with adjacent areas. Apparently, only in
coalbed-methane reservoirs with limited re-
charge can efficient dewatering and lowering of
reservoir pressure be achieved.

REGIONAL COALBED-METHANE
POTENTIAL

Having identified geologic controls on the
occurrence and producibility of coalbed meth-
ane, the regional coalbed-methane potential of
the Black Warrior basin in Alabama can be
characterized. A trend-analysis map was form-
ulated using critical geologic production param-
eters that are mappable at basin scale (fig. 108).
Criteria used to characterize coalbed-methane
potential include depth of the Mary Lee coal
group, coal abundance, coal rank, ash content,
and salinity of formation water.

Depth to the Mary Lee cycle was approxi-
mated by using elevation contours from the
regional structure map (figs. 8, 108). Depth, and
thus formation pressure, increases toward the
southwest, so gas-retention capacity may in-
crease in that. direction. In the northernmost
part of the study area, the Mary Lee cycle is
above sea level (shallower than 500 feet), and
target coal groups crop out. However, the Black
Creek group may have sufficient depth to retain
an economic methane resource in part of this
area, and lower Pottsville coal, which was not
evaluated in this investigation, may also be a
viable drilling target. To date, nearly all coalbed-
methane production is between 500 and 3,500
feet below the surface. Southwest of the -3,000-
foot contour, production potential is unknown,
but permeability may be low because of high
confining pressure (lithostatic and hydrostatic)
and scarcity of unloading fractures (set Il joints).

Coal beds are most abundant in the south-
eastern part of the Black Warrior basin, where
fifteen or more coal beds occur in the Black
Creek-Cobb interval, indicating a significant

" coalbed-methane resource (figs. 42, 108). Thus

far, all coalbed-methane fields are in that area,
and application of sedimentologic models of
coal occurrence may improve exploitation of
proven coalbed-methane resources. Production
potential also exists where fewer than 15 coal
beds are in the Black Creek-Cobb interval. The
Pratt and Black Creek cycles contain more coal
beds in a larger area than the other cycles and
are thus the most attractive completion targets
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" in the west; coal beds in the Pratt cycle are close-
ly spaced and may thus warrant detailed invest-
igation. However, thickness and gas-content
data for coal in the western part of the study
area are lacking.

The 34-percent volatile-matter contour in
the Mary Lee coal group indicates areas where a
significant methane resource has been gener-
ated thermally (figs. 76, 108). Where volatile
matter data are not available, the 0.8-percent
vitrinite-reflectance contour was plotted (figs.
79, 108). Methane has been generated thermally
in the southern part of the study area, and areas
with sufficient coal rank that lack coalbed-meth-
ane wells occur in southern Walker County and
the western part of the study area. The coalbed-
methane potential of the northern and central
parts of the study area is questionable, because
thermogenic methane resources may be limited,
and in some places, only biogenic and migrated
methane may be present. These areas include
the western parts of Blue Creek and Deerlick
Creek fields.

Thermal and burial history may be of
concern in developing areas with thick Creta-
ceous cover (fig. 108) because Pottsville coal may
be undersaturated with gas. The rank discontin-
uity between bituminous Pottsville strata and
lignitic Mesozoic and Cenozoic strata indicates
that coalification, and hence thermal gas gener-
ation, preceded formation of the Pennsylvanian-
Cretaceous unconformity. Therefore, Pottsville
coal may have degassed to maintain equilibrium
with decreasing lithostatic pressure during post-
Pennsylvanian unroofing of the Black Warrior
basin. Subsequent reburial of Pottsville strata
below Mesozoic and younger sediment evi-
dently raised lithostatic pressure without gener-
ating new gas, thereby increasing potential for
undersaturated coal.

Another factor in the regional trend analysis
is ash content of coal which may be inversely
related to methane content. A generalized belt
that extends from southeastern Fayette and
northern Tuscaloosa Counties to western
Jefferson County depicts areas with high ash
content (fig. 108). Coal-quality data suggest that
the high-ash belt extends westward at least a
short distance below Cretaceous cover. Addi-
tionally, ash content and distribution vary con-
siderably in each coal group, so ash maps (figs.
80 through 87) should be used to evaluate the
production potential of individual coal groups
and coal beds.

19

To identify permeability trends and charac-
terize the quality of produced water, the area
with low water salinity (<3,000 mg/L TDS) was
included in the trend-analysis map (figs. 95, 108).
Note that fresh-water protrusions in the Mary
Lee group are restricted to a small part of the
southeast basin margin. Water with less than
3,000 mg/L TDS aiso occurs in the Black Creek-
Cobb interval along the northern margin of the
Pottsville outcrop area (Pashin and others, 1990).
Below Cretaceous cover in the western part of
the study area, TDS content of production water
is inferred to exceed 10,000 mg/L, so disposal of
saline water probably will be a primary concern
if major westward expansion takes place. Even
50, low-salinity water may exist where the Potts-
ville Formation is in hydrologic communication
with Cretaceous aquifers, but reservoirs in which
such communication occurs may be difficult to
dewater.

Results of regional trend analysis indicate
that all parts of the study area have some coal-
bed-methane potential (fig. 108), but that po-
tential is variable, and proven trends of
exceptional productivity are localized (fig. 106).
As has long been known, the Oak Grove-Brook-
wood area is favorable for coalbed-methane
development because coal occurs at consider-
able depth, is thick and abundant, has the high-
est rank in the basin, contains little ash, and
contains fresh water. Potential decreases in all
directions from the Oak Grove-Brookwood area,
and is perhaps lowest in the northern part of the
study area where coal beds in the Black Creek-
Cobb interval are shallow or crop out, are few ,
have variable ash content, and are thermally im-
mature. However, rank and perhaps gas content
increase with depth, so deep coal resources may
have economic potential.

A large part of the study area has significant
coalbed-methane potential but has yet to be
drilled. This area includes southern Tuscaloosa,
northern Hale, northeastern Greene, Pickens,
southwestern Lamar, and northern Sumter
Counties (fig. 108), where coal is of sufficient
rank to have generated methane thermally.
More than 15 coal beds occur in southern Tus-
caloosa, northern Hale, and northeastern
Greene Counties, but coal abundance is least in
the western part of the study area. Perhaps the
biggest problems in westward expansion of
coalbed-methane development are potential for
high-TDS water (>10,000 mg/L) and reduced
permeability owing to the increased depth to
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coalbed-methane target strata. Even so, gas-
content data from southern Tuscaloosa County
(Levine and others, 1989) suggest that signifi-
cant economic potential exists in undrilled areas.

SUMMARY AND CONCLUSIONS

Understanding geologic controls on the
occurrence and producibility of coalbed meth-
ane is essential for developing exploration and
production strategies that will help ensure a
long-term, low-cost supply of domestic natural
gas. Characterizing those controls was the ob-
jective of this study which focused on the Black
Creek-Cobb interval of the upper Pottsville For-
mation in the Black Warrior basin of Alabama.
This study was designed to establish ways in
which structure, sedimentology, coal quality,
and hydrology are critical production param-
eters for coalbed-methane resources in the Black
Warrior basin.

Geologic structure was a unifying concept in
this study because it affected sedimentation,
coalification, hydrogeology, and the ultimate
occurrence and producibility of coalbed meth-
ane. Understanding structure is crucial in explor-
ation and production planning because it con-
trols the attitude, depth, and fracture archi-
tecture of target coal-bearing strata. Strata in
the Black Warrior basin generally dip southwest,
are broken by numerous folds, thrust faults,
normal faults, joints, and cleats that define
avenues of permeability and reflect a complex
tectonic history. Tectonism resulted in diverse
structural patterns that affect fluid flow, and
hence, the occurrence and producibility of coal-
bed methane.

Cyclic Black Creek-Cobb sedimentation re-
flected the evolving structural framework of the
Black Warrior basin. Despite that evolving
framework, regional sedimentologic basin anal-
ysis showed that coal beds in each depositional
cycle are most abundant in southern Tuscaloosa
and western Jefferson Counties because
proximity to a sediment source and protection
from marine water provided fluvial-deltaic
platforms amenable to peat (coal) accumulation.
Outcrop analysis of the Mary Lee coal group
indicated that fluvial processes are major
controls on coal-body thickness and geometry
and was used to formulate detailed models of
coal occurrence that can be applied in subsur-
face studies. Crevasse-splays formed along the

flanks of fluvial axes and thus controlled coal
occurrence locally. In contrast, channel avulsion
involved abandonment and establishment of
new fluvial axes and was thus a regional control
on coal occurrence.

Subsurface investigation of coal occurrence
in Oak Grove field identified varied and con-
trasting styles of coal occurrence and resulted in
predictive models of coal occurrence that are ad-
vantageous for resource assessment, strategic
well siting, and identifying completion targets.
Fluvial processes were the major controls on coal
occurrence in the Black Creek cycle, whereas
fluvial and structural processes acted in concert
to control coal occurrence in the other cycles.
Thick coal beds in the Pratt and Cobb cycles
occur on the downthrown side of a major fault,
because differential subsidence promoted peat
accumulation in the absence of detrital influx. In
the Mary Lee cycle, however, channel incision
provided sufficient topographic relief for thick
peat to accumulate in a paleovalley system on
the upthrown block. In the eastern part of the
field, gentle downwarping promoted splitting
of beds and preservation of some of the thickest
coal bodies in the Black Creek-Cobb interval.

As sedimentation and tectonic subsidence
continued, Pottsville peat was coalified, and gas
was generated. Comparing rank and structural
data suggests that regional burial coalification
was overprinted hydrothermally in Oak Grove
and Brookwood fields, thereby forming the
highest rank coal in the basin. Ash and sulfur
content tend to be lowest in the easternmost
part of the Pottsville outcrop area on the major.
fluvial-deltaic platforms where thick peat accu-

‘mulated. Coal is apparently the principal source

of coalbed methane in the Pottsville, and the gas
may have locally undergone thermal cracking
and bacterial alteration. Coalbed methane evi-
dently includes comingled biogenic and thermo-
genic gas, and some coalbed gas may have mi-
grated into coal from deep sources.

Tectonism, sedimentation, and coalification
all acted in concert to form the hydrogeologic
framework that controls coalbed-methane
production. Close cleat spacing makes coal beds
the principal aquifers in the coalbed-methane
fields, and most other groundwater flow is
through secondary conduits, particularly joints.
Underground mining and coalbed-methane
production have lowered the water table and
have reduced reservoir pressure significantly in
many areas. Recharge along the southeast basin



margin has formed structurally controlled fresh-
water plumes that minimize water-disposal
problems. However, Cretaceous aquifers inter-
cept and transmit recharge in the western part
of the basin and may thus increase water-
disposal concerns in that area. Water production
from the Black Creek-Cobb interval is variable,
and water-production data suggest that many
coalbed-methane reservoirs are structurally
compartmentalized.

Statistical analysis yielded limited success in
identifying the impact of well design and geol-
ogy on coalbed-methane production. Despite
changing engineering practice, well-design fac-
tors, such as completion, stimulation, and well
spacing, do not correlate significantly coalbed-
methane production. Geologic factors, such as
net completed coal thickness and well depth,
also do not correlate significantly with peak gas
production. Water production correlates weakly
with gas production, reflecting the necessity of
removing water from coalbed reservoirs to re-
duce reservoir pressure and thus desorb meth-
ane from coal. Minimal gas production in many
wells that produce water abundantly, however,
suggests that permeable reservoirs are abundant
in the Black Creek-Cobb interval, but only those

reservoirs with limited recharge can be de-

watered and thus depressurized effectively.

Production maps demonstrate that wells
with exceptional coalbed-methane production,
or peak gas production higher than 200 Mcfd,
are localized, and water-level data indicate all of
those wells occur where reservoir pressure has
been lowered significantly. Exceptionally pro-
ductive wells are commonly grouped in north-
east trends, and detailed production and struc-
ture mapping in Oak Grove field showed that
one of those trends occurs near an underground
coal mine along a synclinal structure and an
associated fresh-water salinity anomaly. These
results suggest that exceptional gas production
occurs in permeable, fractured reservoir com-
partments that can be dewatered effectively,
thereby lowering reservoir pressure.

Perhaps the most important remaining aven-
ue of research is to develop a strategic well-
siting and well-design plan. For example, wells
drilled in permeable fracture systems may not
need to be stimulated, whereas wells between
those systems may require advanced fracture
treatments that can duplicate ideal geologic
conditions. This study succeeded in identifying
geologic controls on coalbed-methane produc-
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tion in trends of exceptional productivity, but
much research remains to be performed regard-
ing the controls on gas production between
those trends. A well-spacing and well-design
strategy needs to be developed for areas be-
tween exceptional production trends that will

- capitalize on regional permeability anisotropy

and reservoir compartmentalization, thereby
optimizing reservoir drainage.
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